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Abstract

Entre los 17 Objetivos de Desarrollo Sostenible propuestos dentro de la Agenda 2030

y adoptados por todos los Estados miembros de las Naciones Unidas, el quinto ODS

es un llamamiento a la acción para convertir efectivamente la igualdad de género

en un derecho humano fundamental y una base esencial para un mundo mejor. In-

cluye la erradicación de todo tipo de violencia contra las mujeres. Centrándonos en

la perspectiva tecnológica, el abanico de soluciones disponibles para prevenir este

problema social es muy limitado. Además, la mayoría de las soluciones se basan en

un enfoque de botón de pánico, dejando de lado el uso y la integración de las tec-

nologías actuales de vanguardia, como el Internet de las cosas (IoT), la computación

afectiva, los sistemas ciberfísicos y los sensores inteligentes. Así, el objetivo princi-

pal de esta investigación es aportar nuevos conocimientos en el diseño y desarrollo

de herramientas para prevenir y combatir las situaciones de riesgo e, incluso, las

agresiones de Violencia de Género, desde una perspectiva tecnológica, pero sin dejar

de lado las diferentes consideraciones sociológicas directamente relacionadas con el

problema. Para lograr tal objetivo, nos basamos en la aplicación de la computación

afectiva desde un punto de vista realista, es decir, apuntando a la generación de

sistemas y herramientas capaces de ser implementados y utilizados en la actualidad

o en un plazo alcanzable. Esta visión pragmática se canaliza a través de: 1) un

estudio exhaustivo de las herramientas y mecanismos tecnológicos existentes orien-

tados a la lucha contra la Violencia de Género, 2) la propuesta de un nuevo sistema

smart-wearable destinado a solventar algunas de las limitaciones tecnológicas en-

contradas en la actualidad, 3) un novedoso enfoque de clasificación de las emociones

relacionadas con el miedo para desentrañar la relación entre las emociones y la fisi-
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ología, y 4) la definición y publicación de un nuevo conjunto de datos multimodales

para el reconocimiento de emociones en mujeres.

En primer lugar, se exploran y diseñan diferentes sistemas de clasificación del miedo

utilizando un conjunto reducido de señales fisiológicas. Para ello se emplean con-

juntos de datos abiertos junto con la combinación de técnicas de dominio temporal,

frecuencial y no lineal. Este proceso de diseño está rodeado de compensaciones entre

las consideraciones fisiológicas y las capacidades integradas. Esto último es de suma

importancia debido al enfoque de esta investigación en la computación de borde. En

esta primera tarea se destacan dos resultados: el sistema de clasificación del miedo

diseñado que empleó los datos del conjunto de datos DEAP y logró un AUC de

81,60% y un Gmean de 81,55% de media para un enfoque independiente del sujeto,

y sólo dos señales fisiológicas; y el sistema de clasificación del miedo diseñado que

empleó los datos del conjunto de datos MAHNOB logrando un AUC de 86,00% y

un Gmean de 73,78% de media para un enfoque independiente del sujeto, sólo tres

señales fisiológicas, y una configuración Leave-One-Subject-Out. Se presenta una

comparación detallada con otros sistemas de reconocimiento de emociones prop-

uestos en la literatura, que demuestra que las métricas obtenidas están en línea con

el estado del arte.

En segundo lugar, se presenta Bindi. Se trata de un sistema multimodal autónomo

de extremo a extremo que aprovecha el IoT afectivo a través de sensores comer-

ciales inteligentes auditivos y fisiológicos, la fusión multisensorial jerárquica y una

arquitectura de servidor segura para combatir la violencia de género mediante la

detección automática de situaciones de riesgo basada en un motor de inteligencia

multimodal y la posterior activación de un protocolo de protección. En concreto,

esta investigación se centra en el diseño de hardware y software de uno de los dos

dispositivos informáticos de borde de Bindi. Se trata de un brazalete que integra

tres sensores fisiológicos, actuadores, chips integrados de monitorización de energía

y un System-On-Chip con capacidades inalámbricas. En este contexto, se presen-

tan diferentes exploraciones del espacio de diseño embebido: evaluación del filtrado

embebido, evaluación de la calidad de la señal fisiológica en línea, extracción de car-

acterísticas y análisis del consumo de energía. Los resultados reportados en todos

estos procesos se validan con éxito y, para algunos de ellos, incluso se comparan con
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equipos de medición fisiológica estándar. Entre los diferentes resultados obtenidos

respecto al diseño e implementación embebida dentro de la pulsera de Bindi, cabe

destacar que su bajo consumo de energía proporciona una duración de la batería de

aproximadamente 40 horas cuando se utiliza una batería de 500 mAh.

Finalmente, las particularidades de nuestro caso de uso y la escasez de conjuntos

de datos multimodales abiertos que traten sobre tecnología inmersiva emocional,

metodología de etiquetado considerando la perspectiva de género, distribución equi-

librada de estímulos respecto a las emociones objetivo, y procesos de recuperación

basados en las señales fisiológicas de las voluntarias para cuantificar y aislar la acti-

vación emocional entre estímulos, nos llevaron a la definición y elaboración del con-

junto de datos Women and Emotion Multi-modal Affective Computing (WEMAC).

Se trata de un conjunto de datos multimodal en el que 104 mujeres que nunca han

experimentado la violencia de género que realizaron diferentes visualizaciones de

estímulos relacionados con la emoción en un entorno de laboratorio. Los anteri-

ores sistemas de clasificación binaria del miedo fueron mejorados y aplicados a este

novedoso conjunto de datos multimodal. Por ejemplo, el sistema de reconocimiento

de miedo multimodal propuesto utilizando este conjunto de datos reporta hasta un

60,20% y un 67,59% para el ACC y la puntuación F1, respectivamente. Estos valores

representan un resultado competitivo en comparación con el estado del arte que se

ocupa de casos de uso multimodal similares.

En general, esta tesis doctoral ha abierto una nueva línea de investigación dentro

del grupo de investigación bajo el que se ha desarrollado. Además, este trabajo

ha establecido una base sólida desde la que ampliar el conocimiento y continuar la

investigación orientada a la generación tanto de mecanismos de ayuda a colectivos

vulnerables como de tecnología de orientación social.
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Capı́tulo 1
Introducción

1.1 Contexto y motivación
La violencia de género constituye una violación de los derechos humanos y de

las libertades fundamentales reconocida por la Declaración de las Naciones Unidas

sobre la Eliminación de la Violencia contra la Mujer de 1993 [13]. Esta declaración

proporciona una definición clara y completa de lo que significa este tipo de violencia,

que se recoge en su primer artículo al considerar cualquier acto de violencia, ya sea

física, sexual o psicológica, basada en la pertenencia al género femenino. En 2020,

la Comisión Europea amplió dicha definición y declaró que esta violencia incluye

la ejercida contra las mujeres, los hombres y los niños [14]. En cuanto a las cifras

concretas, desde el año 2000 hasta 2018, más de una de cada cuatro (27%) mujeres

alguna vez emparejadas con edades comprendidas entre los 15 y los 49 años habían

sufrido violencia física o sexual, o ambas, por parte de su pareja desde los 15 años

[15]. Este problema no es nuevo, de hecho, en la Unión Europea, el primer principio

de igualdad de trato entre hombres y mujeres se introdujo en 1975 en el Tratado

de Roma [16]. Sin embargo, es en 2007 a través del Tratado de Lisboa [17] que la

Comunidad Europea incluyó este principio entre los valores y objetivos de la Unión.

Desde entonces, diferentes territorios de Europa han tomado estas medidas como

base para sus leyes de violencia de género. A pesar de estos esfuerzos, seguía siendo

necesario contar con un conjunto de normas o reglas comunitarias aplicables a este

problema. Así, en 2011 se aprobó el Convenio del Consejo de Europa para prevenir y

combatir la violencia contra las mujeres y la violencia doméstica, también conocido

como Convenio de Estambul, que entró en vigor más tarde, en 2014 [18]. Este
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convenio estableció un marco o instrumento común a partir del cual se establecen

diferentes normas sobre prevención, protección, persecución y prestación de servicios

para responder a las necesidades de las víctimas y de las personas en riesgo. Hasta la

fecha, todos los miembros han firmado la convención y 35 de los 47 la han ratificado,

aunque en julio de 2021, Turquía se convirtió oficialmente en el primer y único país en

retirarse de ella. Hay que tener en cuenta que este país estuvo entre los precursores

iniciales de este acuerdo. Además, el Convenio de Estambul creó un mecanismo

de seguimiento encargado de controlar, informar y evaluar las medidas legislativas

y de otro tipo adoptadas por los Estados ratificantes. Sin embargo, la aplicación

de todas las recomendaciones del convenio no siempre es una tarea sencilla, ya que

depende de los recursos de cada Estado. Por ello, se han puesto en marcha diferentes

programas de financiación de la Unión Europea para facilitar la puesta en marcha

de estas acciones (DAPHNE, PROGRESS, REC), pero siempre con un enfoque

de aprendizaje mutuo aprovechando el mensaje dentro y fuera de la Comunidad

Europea, ya que se concibe como un problema mundial [19]. Junto a estos acuerdos,

convenios y programas de financiación, también se han creado diferentes pactos y

organizaciones, como el Pacto Europeo por la Igualdad de Género (2011-2020) y el

Instituto Europeo de la Igualdad de Género. Estas acciones han ido acompañadas

de normativas europeas, que pretenden salvaguardar los derechos de las víctimas

desde el punto de vista jurídico (UE 606/2013, 2012/29/UE).

Centrándonos en España, país en el que se ha desarrollado esta investigación, hay

que destacar la aprobación por unanimidad en 2004 de la Ley Orgánica 1/2004 a

través de la cual este país se convirtió en un referente fundamental en el mundo

por la forma de afrontar este problema. En concreto, se trata de una ley integral

contra la Violencia de Género, que considera también este tipo de violencia como

la que se ejerce sobre las personas dependientes de la mujer cuando se abusa de

ellas para causarles daño. Además, España fue uno de los primeros países en firmar

el Convenio de Estambul en 2011, para posteriormente ratificarlo en 2014. Otra

fecha clave en la hoja de ruta nacional fue la ratificación del Acuerdo Nacional

contra la Violencia de Género por parte de los diferentes Grupos del Parlamento

Nacional, los Gobiernos Autonómicos y las Entidades Locales en diciembre de 2017.

Al igual que muchos otros países de la Comunidad Europea, España está dividida

Jose A. Miranda, Tesis Doctoral 2
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en Comunidades Autónomas que, al margen de lo que se refiere a la aplicación

legislativa nacional, tienen sus propias leyes y normas regionales. Por ejemplo, la

Comunidad Autónoma de Madrid cuenta con una dilatada experiencia en materia

de políticas y actuaciones legales en materia de Violencia de Género. Uno de los

mayores logros de esta comunidad en relación con este tema fue la aprobación de

la primera Ley de Ordenación Regional nº 5/2005, de 20 de diciembre, de medidas

de protección integral contra la Violencia de Género. Además, esta comunidad

también creó un órgano institucional regional específico para asesorar y evaluar la

integración de dichas políticas, éste fue concebido como el observatorio regional de

Violencia de Género en 2003 (decreto 256/2003, de 27 de noviembre). Por último, en

2016 presentaron una estrategia integral de prevención y lucha contra la Violencia

de Género, que consistía en una serie de medidas y acciones a desarrollar desde

ese año hasta 2021 y que reflejaba el compromiso del gobierno madrileño de luchar

por la erradicación de este problema. A pesar de todas estas medidas nacionales y

regionales, la oficina del Gobierno contra la Violencia de Género contabilizó un total

de 1117 mujeres asesinadas desde 2003 hasta octubre de 2021, Fig. 1-1.

Basándonos en los hechos anteriores, podemos concluir que la violencia de género es

un problema de emergencia que lleva a la sociedad a enfrentarse a él utilizando difer-

entes perspectivas y adoptando un enfoque multidisciplinar. Por ejemplo, desde el

punto de vista sociológico, la educación y la concienciación informativa sobre la pre-

vención y el combate de la violencia contra las mujeres es fundamental. Además, la

perspectiva tecnológica es también un aspecto fundamental relacionado con el desar-

rollo de nuevas tecnologías emergentes que faciliten la creación de nuevas platafor-

mas para prevenir y responder a la violencia de género [20]. De hecho, estas y

otras perspectivas como la jurídica, la psicológica y la médica, entre otras, están

vinculadas y colaboran en la búsqueda de soluciones cotidianas para combatir este

problema. Esta reivindicación multidisciplinar está fuertemente respaldada por un

amplio abanico de profesionales que trabajan estrecha y personalmente con las vícti-

mas (agentes de la autoridad, jueces y psicólogos) [21]. Sin embargo, identifican dos

grandes inconvenientes de los actuales instrumentos públicos coincidiendo en que se

deberían invertir más esfuerzos y mejor organizados en los mecanismos o herramien-

tas de prevención y en la formación de los profesionales que tratan directamente con

3 Jose A. Miranda, Tesis Doctoral
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Figure 1-1: Número total de víctimas de violencia de género asesinadas desde 2003
hasta octubre de 2021. Datos proporcionados por [1].

las víctimas para evitar una revictimización más dañina.

A pesar del esfuerzo institucional, desarrollar soluciones aplicando un enfoque mul-

tidisciplinar para crear comunidades más seguras es una tarea difícil. Sin embargo,

es necesario que todas las perspectivas mencionadas se comprometan y cooperen de

forma más estrecha para combatir la violencia de género de forma eficaz. Debido a

la transformación digital que están experimentando algunos países de Europa, están

tratando de aprovechar el desarrollo de las nuevas tecnologías para proporcionar

servicios a las comunidades, de los cuales, algunos están destinados a tratar este

problema en cuestión. Por ejemplo, en España se han puesto en marcha diferentes

servicios, como VioGen [22], ATENPRO [23], y COMETA [9]. En primer lugar,

VioGen permite estimar el nivel de riesgo al que se enfrenta una víctima de vio-

lencia de género y determinar el tipo y grado de protección adecuados para ella.

Este nivel de riesgo se actualiza continuamente en función de su situación jurídica y

social. Esta herramienta es el resultado de una intensa investigación del Ministerio

del Interior español con varios grupos de investigación universitarios españoles con

expertos en psicología, criminología y sociología. En segundo lugar, ATENPRO es

un servicio que proporciona una línea directa y 24 horas al día a las fuerzas de

seguridad españolas a través de un botón del pánico. En concreto, se entrega a la
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1.1. Contexto y motivación

víctima un dispositivo móvil que permite una comunicación continua en cualquier

momento y circunstancia. Dicha comunicación es atendida por un centro de asis-

tencia telefónica especializado, donde asistentes específicamente formados dan una

respuesta adecuada para atender este tipo de situaciones en tiempo real. Por úl-

timo, COMETA es un sistema concebido como un conjunto de dispositivos de control

telemático que se adopta cuando se dicta una orden de alejamiento del agresor. En

este caso, tanto la víctima como el agresor reciben un dispositivo de geolocalización

con capacidades básicas de telecomunicación de voz y datos para comunicarse con el

centro de control. El agresor también debe llevar un ligero dispositivo de radiofre-

cuencia en forma de pulsera que se conecta a los dispositivos de geolocalización.

Aunque COMETA ofrece una solución tecnológica para luchar contra la violencia

de género, su limitada duración de la batería y su tecnología anticuada presentan

una elevada tasa de falsos positivos [24, 25], además del riesgo de acoso para las

víctimas.

Además de los esfuerzos de las organizaciones públicas gubernamentales, el sector

privado también se anima en todo el mundo a aportar una solución al problema

de la violencia de género. De hecho, diferentes iniciativas privadas salen continua-

mente con ideas para prevenir y evitar este problema. Por ejemplo, la Fundación

XPrize lanzó en 2018 un concurso mundial de 1 millón de dólares para desafiar a

equipos de todo el mundo a aprovechar la tecnología para empoderar a las mujeres

a responder a las agresiones sexuales. El objetivo de este concurso era desarrollar

una solución tecnológica capaz de activar alertas de emergencia de forma autónoma,

transmitir información a una red de respondedores de la comunidad y ser lo más

asequible posible, todo ello en 90 segundos. Los siete finalistas utilizaban tecnología

vestible con los últimos protocolos de comunicación inalámbrica conectados con los

diferentes intervinientes o incluso con las fuerzas del orden. Sólo uno de ellos incluyó

en sus dispositivos capacidades de computación afectiva para hacer un seguimiento

perfecto de los niveles de amenaza emocional mediante el uso de información fisi-

ológica cardíaca. El seguimiento de dicha información se ha demostrado como un

sólido indicador emocional [26].

Teniendo en cuenta toda la información revisada y apuntando a la generación

de nuevos mecanismos de prevención y lucha, se podría aprovechar una nueva her-
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ramienta autónoma, inteligente, discreta, conectada, con edge-computing (tecnología

basada en la computación en el nodo, e.g. en dispositivos con muy pocos recursos)

y preparada para ser usada como portable o vestible, capaz de detectar y alertar

cuando una usuaria está bajo una situación de Violencia de Género. Sobre esta base,

el trabajo de investigación descrito en este documento se centra en proporcionar una

solución tecnológica inteligente que ayude a tratar el problema planteado. Este sis-

tema se denominará en adelante BINDI a lo largo de todo el documento, y ha sido

desarrollado por el grupo UC3M4Safety de la Universidad Carlos III de Madrid.

En concreto, esta investigación se centra en el diseño, desarrollo e implementación

de uno de los tres dispositivos que componen el sistema, que es una pulsera in-

teligente que utiliza computación afectiva embebida basada en la monitorización

fisiológica para la detección de estados emocionales relacionados con el miedo. Los

otros dos dispositivos son un colgante inteligente y una aplicación para teléfonos

inteligentes. El primero capta el audio a la carta, mientras que el segundo realiza

la fusión de datos fisiológicos y físicos y gestiona las alarmas de emergencia para

enviarlas a una red de respondedores de confianza o incluso a las fuerzas del orden.

La naturaleza del problema a tratar hizo que este trabajo se derivara por un enfoque

multidisciplinar, reuniendo conocimientos de los estudios de género, la electrónica,

la telemática, la fisiología, las tecnologías del habla y el audio, y la informática o

computación afectiva.

1.2 Alcance de esta disertación
Esta investigación pretende aportar una nueva visión en el desarrollo de herramien-

tas para prevenir y evitar situaciones de riesgo de Violencia de Género e, incluso,

agresiones, desde una perspectiva tecnológica, pero sin dejar de lado las diferentes

consideraciones sociológicas relacionadas con el problema.

Desde un punto de vista teórico, este trabajo propone una nueva forma de utilizar

las señales fisiológicas y el reconocimiento de emociones para proporcionar soluciones

autónomas, vestibles y discretas para proteger a las personas vulnerables. El objetivo

en ese aspecto es desentrañar la relación entre las señales fisiológicas y las emociones

relacionadas con el miedo, proporcionando alternativas a los sistemas de clasificación

de reconocimiento de emociones ya propuestos en la literatura, nuevas arquitecturas
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de sistemas de monitorización fisiológica listos para llevar, nueva integración de

sensores e implementación embebida en dispositivos vestibles, nuevas técnicas para

mitigar el ruido de los artefactos de movimiento fisiológico, y realizando un estudio

analítico de toda la solución propuesta.

Desde un punto de vista práctico, se proporcionaron diferentes sistemas de re-

conocimiento de emociones binarias de miedo basados en bases de datos disponibles

abiertamente que contienen emociones evocadas no actuadas para un conjunto de

voluntarios. Además, se desarrolló e implementó una nueva solución hardware wear-

able para la detección de la violencia de género, basada en la familia de proce-

sadores ARM Cortex-M®, utilizando tres de los sensores fisiológicos más discretos,

Photoplethysmography (PPG), EDA, y SKT, y comunicaciones inalámbricas de baja

potencia. Este dispositivo forma parte del sistema BINDI, que ha sido desarrollado

junto con el grupo UC3M4Safety. Los requisitos para el sistema completo son el

menor consumo de energía posible, una integración discreta y vestible de todos los

dispositivos y componentes, y el menor tiempo de cálculo para las diferentes arqui-

tecturas de procesamiento digital para lograr el mayor tiempo de respuesta posible.

Por último, se generó una nueva base de datos utilizando estímulos inmersivos y

estímulos específicos orientados al caso de uso de la violencia de género. Esto último

es especialmente relevante ya que la base de datos generada es única en la literatura.

En concreto, los objetivos de esta investigación son los siguientes:

• Proponer un nuevo enfoque para detectar las emociones relacionadas con el

miedo haciendo uso de las diferentes teorías emocionales e indicadores fisiológi-

cos afectivos.

• Derivar nuevos sistemas de detección de emociones relacionadas con el miedo,

listos para ser llevados, utilizando bases de datos abiertas que han utilizado

señales fisiológicas para el reconocimiento de emociones.

• Tratar el comportamiento fisiológico (cuasi-estacionario, no estacionario y no

lineal) y proponer nuevas técnicas de procesamiento digital que lo tengan en

cuenta para los sistemas relacionados con el miedo de inferencia rápida.

• Analizar y estudiar diferentes restricciones de integración que deben consider-

arse en los sistemas de computación afectiva vestibles.

• Diseñar una nueva solución de hardware vestible para desplegar las arqui-
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tecturas de sistemas de detección relacionados con el miedo propuestas. En

este punto, afrontaríamos la implementación de hardware y software embe-

bido hacia una solución discreta, autónoma, de bajo consumo, inalámbrica y

conectada.

• Comparar los resultados obtenidos con arquitecturas similares publicadas y

soluciones comerciales para la prevención de la violencia de género.

• Generar una nueva base de datos enfocada al caso de uso específico de Violencia

de Género que recoja las respuestas fisiológicas, físicas y emocionales a los

estímulos inmersivos.

1.3 Esquema del documento
El documento se divide en tres partes. En la primera parte se revisa la relación

entre las emociones y las señales fisiológicas, investigando las diferentes teorías emo-

cionales y los indicadores fisiológicos afectivos. También se analiza el marco general

de las bases de datos utilizadas en la literatura, que tratan del reconocimiento de

emociones mediante el uso de señales fisiológicas. En la segunda parte, se presenta

la aplicación de la teoría revisada en la primera parte a la propuesta y análisis de

un nuevo sistema de reconocimiento de emociones relacionadas con el miedo. En

la tercera parte se presentan los resultados tanto del hardware como del software

embebido del sistema edge-computing desarrollado para el reconocimiento binario

del miedo. Finalmente, en la última parte se presenta la nueva base de datos para

el reconocimiento de emociones centrada en la detección del miedo. Además, a lo

largo de todo el documento se exponen y analizan las limitaciones de la integración

de los wearables y las dinámicas fisiológicas a tener en cuenta.

Así, el esquema del documento es el siguiente:

Parte I

El Capítulo 2 describe las nociones básicas y avanzadas necesarias para com-

prender bien de los temas de esta investigación. En concreto, se estudian las teorías

emocionales, las metodologías de clasificación de las emociones humanas, las her-

ramientas para la elicitación de las emociones y la cuantificación de los indicadores

fisiológicos afectivos. Todos estos temas se apoyan en referencias del estado del

arte que ayudarán a comprender el contenido original que se ofrece en los siguientes
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capítulos.

El Capítulo 3 se centra en proporcionar un análisis en profundidad sobre la

estructura y los procedimientos experimentales utilizados para la generación de bases

de datos diseñadas para el reconocimiento de emociones. Además, también se detalla

y explica cada parte de la cadena completa de procesamiento de datos para la tarea

de diseño de sistemas de computación afectiva utilizando dichas bases de datos.

Parte II

El Capítulo 4 aborda uno de los principales objetivos de la tesis. Se trata del

diseño y la validación de sistemas novedosos de reconocimiento del miedo basados

en un conjunto reducido de señales fisiológicas. Se seleccionan diferentes bases de

datos públicas disponibles para diseñar dos sistemas principales de reconocimiento

de emociones binarias de miedo. Las limitaciones encontradas en dichas bases de

datos se detectan y se tienen en cuenta para el trabajo presentado en el Capítulo

6. Además, los resultados presentados en este capítulo se comparan con el estado

actual de la técnica.

Parte III

El Capítulo 5 detalla el proceso de diseño e integración de una nueva solución de

hardware wearable para desplegar partes de las arquitecturas del sistema de detec-

ción de miedo propuesto en el Capítulo 4. Por un lado, se contextualiza esta nueva

solución vestible analizando la tecnología actual que se aplica para la prevención y

el combate de la violencia de género. Por otro lado, se detallan y explican exhausti-

vamente los retos de diseño e integración, tanto desde el punto de vista del hardware

como del software.

Capítulo 6 desarrolla una de las principales contribuciones de esta investigación.

Se trata de la generación de un novedoso conjunto de datos multimodales, Dataset-

Name, consistente en experimentos realizados en un entorno de laboratorio con

sólo mujeres voluntarias. Además, se emplean las diferentes arquitecturas de com-

putación afectiva propuestas y presentadas en el Capítulo 4, utilizando los datos

recogidos en este conjunto de datos. Por último, también se presenta una aproxi-

mación multimodal mediante la fusión de datos fisiológicos y del habla para propor-

cionar una primera línea de base a tener en cuenta para futuros trabajos.

Parte IV
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Capítulo 7 concluye esta investigación y ofrece algunas sugerencias sobre la posible

ampliación de este trabajo en un futuro próximo.
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Parte I

Emociones humanas, señales

fisiológicas y computación afectiva
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Capı́tulo 2
Clasificación de las emociones y

cuantificación fisiológica

Este capítulo se basa en cuatro temas esenciales, necesarios para el desarrollo de

esta investigación: las teorías emocionales, las metodologías de clasificación de las

emociones humanas, las herramientas para la elicitación de las emociones y la cuan-

tificación de los indicadores fisiológicos afectivos. En primer lugar, se analizan

cronológicamente las principales teorías emocionales y se evalúan con vistas al caso

de uso específico de esta investigación. Para ello, se relaciona su orden de activación

emocional con los efectos relativos a la elaboración de sistemas informáticos afec-

tivos. También se presentan y analizan las diferentes metodologías de clasificación

de las emociones humanas revisando sus ventajas e inconvenientes y explotando su

relación con las teorías emocionales anteriores. A continuación, se realiza un análisis

exhaustivo de los efectos en la modulación de las emociones por parte de factores

intrapersonales como los rasgos de personalidad, la cognición, la atención y el sesgo

de género, que profundiza en la aportación de la contextualización personal dentro

de las metodologías de clasificación de las emociones humanas. Posteriormente, se

presenta un nuevo enfoque pragmático para fusionar esos métodos de clasificación

de las emociones humanas, que se aplicará posteriormente en los modelos generados

con el fin de limitar la identificación o el reconocimiento de la emoción del miedo.

En segundo lugar, se comparan las diferentes herramientas para evocar emociones.

Por último, se presenta y analiza un conjunto reducido de señales fisiológicas y su

relación con las emociones y los modelos emocionales. Aunque se ha demostrado que
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muchas otras señales fisiológicas garantizan características específicas relacionadas

con las emociones, no pueden ser adquiridas por sensores poco visibles para su uso

diario. Por lo tanto, se estudia a fondo la información relacionada con las emociones

que puede proporcionar cada uno de los sensores fisiológicos más discretos, así como

su estado actual de desarrollo e integración en dispositivos portátiles y los retos

actuales.

2.1 Supuestos y definiciones
Antes de entrar en detalles sobre los diferentes temas que se van a tratar en este

capítulo, es necesario dar algunas premisas y definiciones.

• En primer lugar, las emociones son un compuesto de reacciones conductuales,

procesos cognitivos subjetivos y cambios fisiológicos, en su mayoría desenca-

denados por estímulos emocionales [27].

• Se denomina estímulo emocional a cualquier tipo de material o proceso a

través del cual se provoca una emoción específica a una persona. Derivan

en respuestas emocionales específicas.

• Las respuestas emocionales pueden cuantificarse o medirse utilizando autoin-

formes subjetivos, información física y/o fisiológica, y cualquier tipo de datos

procedentes de la persona sometida a la elicitación de la emoción y recogidos

durante dicho proceso.

• Las bases de datos de reconocimiento de emociones son aquellas que utilizan

estímulos emocionales bajo una presentación o método de interacción especí-

fico para recoger diferentes respuestas emocionales. Toda esa información

puede utilizarse posteriormente para entrenar sistemas informáticos afectivos

inteligentes.

• Los sistemas de computación afectiva utilizan todos los elementos anteriores

para generar un sistema de reconocimiento de emociones entrenado.

2.2 Teorías Emocionales
A pesar de la teoría emocional considerada, se está de acuerdo en que las emociones

intervienen directamente en el ajuste de nuestra respuesta a un estímulo externo. Sin

embargo, no existe un acuerdo común respecto al orden en que se desencadenan los
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compuestos de las emociones al recibir dicho estímulo. Diferentes teorías emocionales

a lo largo de la historia se han postulado tratando de abordar este proceso, algunas

basadas y otras refutando a las anteriores o predecesoras. Por ejemplo, las teorías

emocionales de Darwin [28], James-Lange [29], y Cannon-Bard [30], que se preceden

respectivamente, fueron las tres principales teorías de la emoción antes de 1950 y

cada una de ellas sigue un orden de activación diferente. Darwin fue el primero

en intentar averiguar el origen de las emociones y sus mecanismos de activación.

Aunque su trabajo no tenía en cuenta la información fisiológica dentro del proceso

de reacción emocional, propuso tres principios diferentes que estaban profundamente

vinculados al proceso cognitivo de las emociones. Entre esos principios, destaca el

primero (principio de los hábitos útiles), que se basa en la asociación entre diferentes

acciones y estados mentales específicos, ya que sirvió de base para algunas de las

siguientes teorías cognitivo-emocionales. La teoría de James-Lange afirma que las

emociones se vuelven conscientes para la persona una vez que toda la información

fisiológica ha sido procesada dentro del neocórtex, Fig. 2-1. Por otro lado, la teoría

de Cannon-Bard refuta la afirmación de James-Lange de que la respuesta fisiológica

se produce al mismo tiempo que la reacción de la emoción y de forma independiente.

Stimulus
Emotional

Reaction

Physiological

Processing

Figure 2-1: Orden de activación emocional para la teoría de James-Lange.

Estas tres teorías fueron muy criticadas, ya que las dos primeras carecen de eviden-

cia empírica y la de Bard impone la total independencia de las reacciones fisiológicas

y emocionales. Así, esto dio lugar al nacimiento de las teorías emocionales cogni-

tivas, en las que el contexto de la situación y nuestra experiencia previa también

afectan directamente a esa respuesta conductual. Por ejemplo, la teoría de la valo-

ración de las emociones, desarrollada principalmente por Magda Arnold y Richard

Lazarus [2], entre otros, fue una de las primeras teorías emocionales cognitivas. Se
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Stimulus
Emotional 

Reaction

Physiological 

Reaction
Stimulus 

Evaluation

Figure 2-2: Orden de activación emocional para la teoría desarrollada por Magda
Arnold y Richard Lazarus [2].

basa en el supuesto de que las emociones están directamente determinadas por nues-

tras apreciaciones o evaluaciones de los estímulos, que pueden provocar reacciones

fisiológicas y emocionales específicas y simultáneas en diferentes personas, Fig.2-

2. Una de las afirmaciones más controvertidas de esta teoría es que las emociones

podrían originarse directamente a partir de nuestras propias valoraciones sin necesi-

dad de una excitación fisiológica. Este hecho implica la posible falta de correlación

de la respuesta fisiológica con respecto al estímulo externo específico. Junto con

la aparición de la teoría de la valoración de las emociones, Albert Ellis introdujo

la teoría racional-emotiva [3], que incluye el proceso de valoración o evaluación al

afirmar que las emociones se ven directamente afectadas por nuestros pensamientos

o creencias, pero no descuida la respuesta fisiológica a un estímulo. Además, esta

última va precedida de la reacción emocional a diferencia de las otras teorías, Fig.

2-3. Aunque las teorías cognitivas son ampliamente aceptadas, se observan muchas

variaciones dentro de ellas. En la actualidad, el papel completo de la cognición sobre

las emociones sigue siendo una cuestión abierta [31].

A pesar del enorme esfuerzo por desentrañar el paradigma del origen de la emoción

a lo largo de los años, todavía no existe una definición consensuada para la emoción

ni un orden de activación de los diferentes elementos que intervienen en ella. En

concreto, en nuestro caso, la teoría en la que se basa este trabajo de investigación es

la teoría racional-emotiva. Esta teoría permite la cuantificación emocional a través
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Stimulus
Physiological 

Response

Emotional 

Reaction

Thoughts 

and Beliefs

Figure 2-3: Orden de activación para la teoria emocional racional-emotiva por Albert
Ellis [3].

de la monitorización fisiológica y admite la repercusión de los pensamientos y creen-

cias sobre la emoción sentida. Esta última es, efectivamente, un factor clave a la

hora de abordar el desarrollo de herramientas de reconocimiento de emociones para

prevenir y evitar situaciones de violencia de género. Las experiencias vitales de cada

víctima de violencia de género son diferentes, y la necesidad de no sólo considerar

las interdiferencias reales entre las víctimas, sino también las intradiferencias indi-

viduales a lo largo del tiempo, es esencial para proporcionar una solución mejor y

más inteligente, integrada social y tecnológicamente.

2.3 Clasificación de las emociones humanas
En el contexto de la categorización e identificación inequívoca de las emociones,

la literatura presenta un amplio esfuerzo por llegar a un etiquetado o modelado es-

tandarizado respecto a las mismas [32]. En la comunidad científica de la informática

afectiva, esto se traduce en la identificación de la emoción experimentada por una

persona a través de diferentes datos como los gestos faciales, la voz, la postura y las

señales fisiológicas. Sobre esta base, diferentes autores han propuesto mapeos entre

estados afectivos y patrones o variaciones observadas en estas modalidades. Nótese

que el término modalidad se refiere a las fuentes de información. Así, la detección de

emociones podría definirse como un problema de reconocimiento de patrones [33].

Sin embargo, como en cualquier problema de reconocimiento, el sistema necesita ser

enseñado. El proceso de aprendizaje más común en el reconocimiento de emociones

es mediante el uso de un clasificador supervisado, que se define como un proceso de

aprendizaje supervisado a través de información etiquetada. Esta metodología re-
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quiere tener diferentes muestras de información etiquetada o asignada a la emoción

correcta. La información recogida de todas las modalidades se distribuirá en función

de las etiquetas o clases asignadas a cada muestra adquirida. Por lo tanto, disponer

de etiquetas o modelos emocionales precisos afectará en gran medida al rendimiento

del sistema diseñado.

En los siguientes apartados se revisan las principales metodologías de clasificación

de emociones humanas, así como sus ventajas e inconvenientes. Además, se resumen

y analizan algunos factores clave a la hora de tratar la experiencia emocional y la

personalidad y cómo pueden afectar al proceso de etiquetado de las emociones. Por

último, se conectan las emociones relacionadas con el miedo utilizando los diferentes

métodos de clasificación de emociones humanas, lo que proporciona un nuevo en-

foque para tratar el reconocimiento del miedo en situaciones de violencia de género.

2.3.1 Clasificación discreta de las emociones
Ya en el siglo XIX, Darwin propuso que las emociones eran discretas o categóricas,

es decir, que podían dividirse en módulos como el miedo, el asco, la ira, etc. [28].

Aunque no proporcionó ninguna especificación sobre el número exacto de esas emo-

ciones. Desde entonces, diferentes psicólogos y fisiólogos han utilizado el mismo o

similar enfoque categórico para tratar las emociones. Este enfoque se basa en el con-

cepto de emociones básicas, que son universalmente reconocibles y transculturales.

Así, se afirma que cada una de estas emociones básicas tiene asociados diferentes

patrones fisiológicos, así como diferentes efectos en la voz, los gestos faciales, la

postura, etc. Sin embargo, a lo largo de los años, ha habido diferentes teóricos psi-

cológicos y fisiológicos que aportan listas de emociones primarias, cada uno de ellos

basándose en diferentes criterios para definir cuáles son emociones básicas y cuáles

no. Por ejemplo, Ekman y Friesen [34, 35] aportaron datos para reafirmar la teoría

expuesta por Darwin, y basaron la mayor parte de sus primeras investigaciones para

las emociones básicas en expresiones faciales inequívocas entre culturas. Basándose

en este criterio, afirmaron la existencia de seis emociones básicas: ira, asco, miedo,

sorpresa, tristeza y alegría. En 1972, viajaron a Papúa Nueva Guinea y conocieron a

la tribu Fori. Presentaron diferentes imágenes a la tribu, que fue capaz de identificar

las seis emociones diferentes. Después, mostraron imágenes de expresiones faciales

de la gente de la tribu Fori, con las mismas emociones, a personas de otras nacional-
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Table 2.1: Main categorical models of emotions developed since 19th century.
Autores(s) Afirmaciones Basadas en

Ekman & Friesen [35] Seis emociones básicas: ira, asco, miedo, Gestos faciales
alegría, tristeza y sorpresa universales

Carroll Izard [36]
Diez emociones básicas: ira, desprecio, Derivadas del
asco, angustia, miedo, culpa, interés, comportamiento
alegría, vergüenza y sorpresa

Robert Plutchik [37]
Ocho emociones básicas: ira, aceptación, Evolución
alegría, anticipación, miedo, disgusto, tristeza, biológica
y sorpresa y supervivencia

Nico Frijda [38] Seis emociones básicas: el deseo, la felicidad, Cambio en
interés, sorpresa, asombro y tristeza acción

Oatley & Laird [39] Cinco emociones básicas: ira, asco, Estados
ansiedad, felicidad y tristeza cognitivos

idades y culturas. Concluyeron que las emociones se interpretaban correctamente

y afirmaron que las emociones son universalmente reconocibles por las expresiones

faciales.

Cronológicamente después de Darwin, algunas de las principales contribuciones a

este enfoque de clasificación de las emociones humanas se resumen en el cuadro 2.1.

Entre estos autores, Robert Plutchik es conocido por haber creado la rueda de las

emociones [37], que fue una de las primeras representaciones gráficas que intentó

ilustrar cómo se relacionaban las emociones desde un punto de vista categórico.

Algunos de los aspectos clave del modelo de Plutchik han influido en propuestas

posteriores de clasificaciones discretas de las emociones humanas. Por ejemplo, in-

trodujo el concepto de emociones opuestas, que no pueden experimentarse al mismo

tiempo, e incluso propuso que las emociones pueden sentirse con diferente intensi-

dad, lo que lleva a transformar la rueda en un modelo discreto multidimensional de

las emociones. En realidad, el aspecto más discutido del enfoque de Plutchik es el

primer concepto, ya que muchos científicos no están de acuerdo citando diferentes

ejemplos en los que se pueden desencadenar emociones opuestas al mismo tiempo.

Cabe destacar que los colaboradores citados en la tabla 2.1 no se ponen de acuerdo en

el número y la naturaleza de las emociones básicas, incluso algunos de estos autores

a lo largo de los años han modificado su número declarado de emociones básicas.

En el caso de Ekman, considerado un pionero dentro del campo de la investigación

emocional en el presente siglo, su investigación se basó en la evidencia existente

de siete emociones básicas a las que posteriormente se incluyeron otras diez emo-
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ciones adicionales agradables [40]. Otro psicólogo muy conocido e influyente es Nico

Frijda, que identificó dieciocho emociones básicas en su primer modelo emocional

propuesto [38], que posteriormente evolucionó a un total de seis [41]. Además del

número de emociones básicas, estas propuestas difieren también en cuanto a la teoría

emocional en la que se basan. Como puede observarse, la motivación partió de un

punto de vista darwiniano (expresión facial universal), que evolucionó introduciendo

factores conductuales y biológicos. Finalmente, Oatley y Laird introdujeron el con-

cepto cognitivo al afirmar que las emociones son estados de base cognitiva encargados

de coordinar procesos cuasi-autónomos dentro del sistema nervioso [39]. Nótese que

este último hecho está en consonancia con algunas de las afirmaciones de la teoría de

la valoración de las emociones explicada en la sección 2.2, que admite la posibilidad

de una respuesta fisiológica no correlacionada con respecto a la emoción sentida.

Independientemente de la diversidad de modelos categóricos, la mayoría de ellos

incluyen la ira, la felicidad, la tristeza y el miedo. Sin embargo, debido al origen cul-

tural de cada uno de los autores, algunos postulan la ira y otros la rabia para referirse

a la misma emoción, al igual que cuando utilizan el miedo y la ansiedad. A pesar

de estos desacuerdos, la literatura suele referirse a estas emociones como respuestas

primarias o básicas y universales a los estímulos. Hay que tener en cuenta que ex-

isten más modelos categóricos que los citados en la tabla 2.1. En relación con estos

hechos, una encuesta realizada por Ekman en 2015 [42] supuso un avance clarificador

hacia la estandarización de las emociones básicas. En concreto, se preguntó a 248

científicos del ramo, mediante la misma encuesta, con el objetivo de obtener alguna

evidencia de universalidad en alguna faceta de las teorías emocionales y modelos

categóricos. El mayor acuerdo se obtuvo con sólo cinco de las dieciocho emociones

propuestas: ira (91%), miedo (90%), asco (86%), tristeza (80%) y felicidad (76%).

La encuesta concluye afirmando que, aunque es necesario trabajar para reducir los

desacuerdos, existe un acuerdo sobre las emociones básicas.

2.3.2 Clasificación dimensional de las emociones
Para paliar el problema derivado de la aplicación de diferentes términos categóricos

a un mismo concepto emocional y el análisis de las emociones complejas mediante

la combinación de diferentes emociones básicas, se hace necesaria la utilización de

otras escalas y métodos de cuantificación más allá de los modelos categóricos. Así,
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diferentes autores han introducido lo que se conoce como dimensiones del estado

afectivo. Por ejemplo, Wundt fue el primero en introducir el uso de dos dimensiones

para clasificar e identificar las emociones ya en 1896 [43]. Introdujo las dimensiones

agradable-desagradable y baja-alta intensidad, que fueron utilizadas por muchos

otros investigadores en los años siguientes. Otro de los primeros autores relevantes

fue Osgood [44], que utilizó tres factores diferentes para evaluar los estados afectivos.

Estos factores fueron definidos como evaluación, actividad y potencia. Además,

como se ha comentado en el apartado anterior, Plutchik afirmaba que las emociones

se sienten con diferente intensidad. Este hecho implica que incluso los autores que

han contribuido al desarrollo de modelos categóricos de las emociones, necesitaban

asumir la existencia de algún tipo de dimensión para distinguir las emociones com-

plejas de las básicas. En este sentido, la inclusión de dimensiones cuantitativas

permite la creación de un espacio multidimensional, en el que el sesgo categórico

disminuye y las emociones básicas y complejas pueden ser igualmente identificadas.

Además, la autocalificación o el autoinforme de estas dimensiones después de cada

estímulo presentado a la persona, al igual que el autoinforme cuando se utilizan

emociones discretas, tiene en cuenta tanto las diferencias culturales como las expe-

riencias previas del mismo estímulo. Sin embargo, en este caso multidimensional,

la perfecta comprensión de las distintas dimensiones y la autoevaluación emocional

presentan una ardua tarea.

Uno de los modelos dimensionales más utilizados es el modelo circumplex, postu-

lado por Russel [45]. Este modelo se basa en dos dimensiones diferentes, valencia o

placer (P) y arousal (A), que pueden interpretarse como las dimensiones modernas

de las propuestas por Wundt. En concreto, ambas están concebidas para medir

diferentes aspectos clave del estado afectivo actual. Así, la dimensión de la valen-

cia representa la naturaleza positiva o negativa del estado afectivo, mientras que el

arousal indica la excitación o activación que proporciona ese estado afectivo. A pesar

de que el modelo circumplex ha sido uno de los modelos dimensionales más utiliza-

dos, la adición de otros ejes ortogonales conduce a un espacio multidimensional más

completo. Por ejemplo, Mehrabian [46] introdujo la dominancia como una nueva di-

mensión emocional y así propuso el modelo de placer, excitación y dominancia PAD.

Posteriormente, este modelo ha demostrado ser útil para desentrañar las emociones
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que se sitúan en el mismo cuadrante para un espacio emocional bidimensional (PA).

En este sentido, Demaree et al. en [47] afirmaron que se requiere una clasificación

tridimensional de las emociones (PAD) para identificar adecuadamente un estado

afectivo. Compararon la distinción miedo-enojo utilizando el modelo PA y el modelo

PAD. Como resultado, Demaree et al. aseguraron que sólo la dominancia puede de-

sentrañar emociones como el miedo y la ira, asociadas a la sumisión y la dominancia

respectivamente.

Aunque en las últimas décadas, las clasificaciones dimensionales de las emociones

humanas han ganado atención, todavía existe un profundo debate sobre la inter-

pretación de estas dimensiones y cómo se explica y aplica dicha interpretación. Este

último hecho es clave cuando se trata de comparar estudios de diferentes inves-

tigadores que han utilizado las mismas dimensiones pero que las han explicado a

los voluntarios de forma diferente. Dentro de este contexto y tratando de aportar

claridad en cuanto a la definición, comprensión y explicación de las diferentes di-

mensiones, Bakker et al. [4] relacionaron el modelo PAD con las respuestas afectivas,

cognitivas y conativas o el modelo de afecto, cognición y comportamiento (modelo

ABC de actitudes), Fig. 2-4. Llegaron a la conclusión de que el placer, la excitación y

la dominancia pueden utilizarse junto con el modelo ABC y la distinción entre sentir,

pensar y actuar, respectivamente, para comprender mejor las dimensiones originales

y describir las experiencias ambientales posteriores. Esta última conclusión es clave

para este trabajo de investigación, ya que pone de manifiesto la necesidad de in-

cluir el proceso de valoración o evaluación de la emoción considerando los efectos

del entorno externo. También indicaron la necesidad de realizar más investigaciones

centradas en las experiencias el modelo PAD para concebirlo como un modelo de

emoción dimensional sólido y probado.

A diferencia de la información emocional cualitativa proporcionada por las clasi-

ficaciones discretas, las clasificaciones dimensionales ofrecen métricas cuantitativas

específicas sobre los estados afectivos. Esto puede considerarse una ventaja a la

hora de diseñar cualquier sistema de reconocimiento automático de emociones, ya

que las etiquetas dimensionales autodeclaradas son más específicas y tienen más

probabilidades de ser utilizadas para el cálculo afectivo. Sin embargo, localizar

en coordenadas dimensionales tanto las emociones básicas como las complejas no es
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relationships between the original three dimensions of Mehrabian and Russell
(1974), the three factors of Osgood et al. (1957), the ABC psychology and the
three functions of the souls according to Plato.

Conclusion

This paper demonstrated that the original ideas of Mehrabian and Russell
(1974) about pleasure, arousal and dominance can be connected to the ABC
psychology and the distinction between feeling, thinking and acting that is used
since ages and are still useful to describe environmental experiences. Both
tripartite views bring us back to the first models in environmental psychology
that included the dominance dimension as well, but now based on a better
understanding of all three dimensions. For this reason it is suggested to replace
the often used two dimensional model with pleasure on the horizontal axe and
arousal on the vertical axe (see Fig. 1) by a three dimensional model with
dominance on the third axe (see Fig. 4).

Table 5 Connections between the three dimensions of Mehrabian & Russell, the three factors of Osgood, the
tripartite ABC-psychology and the triad mentioned by Plato

Three dimensions mentioned by Mehrabian &
Russell to describe human responses

Three factors mentioned by
Osgood to describe stimuli

ABC-
psychology

Plato

Pleasure Evaluation Affect Feeling

Arousal Activity Cognition Thinking

Dominance Potency Behaviour
(Conation)

Acting

unpleasure

arousal

no 
dominance

dominance

pleasure

Affective axe: feelings

Conative axe: behavior

Cognitive axe: thoughts

no arousal
Fig. 4 Three dimensional model of pleasure, arousal and dominance as tripartite view of experience (Bakker
and de Boon 2012)

416 Curr Psychol (2014) 33:405–421

Figure 2-4: Relación entre los modelos PAD y ABC. Este último es el modelo de
actitudes por Bakker et al.. Esta relación trata de dar una visión más clara que la
propuesta inicial del modelo PAD [4].

una tarea fácil. Diferentes autores han realizado estudios con una población relativa-

mente grande con el objetivo de definir las posiciones dimensionales exactas para las

emociones dentro de los modelos dimensionales. Por ejemplo, Fontaine et al. [5] uti-

lizaron cuatro dimensiones para localizar el espacio exacto de 24 emociones discretas

utilizando más de 600 participantes, escalas Likert de 9 puntos para cada dimensión

y considerando tres orígenes culturales diferentes. Estas emociones se tomaron del

conocido instrumento GRID1, que comprende 144 características de emoción repre-

sentativas de los diferentes componentes de las emociones. Lograron mapear los 24

términos emocionales en su esquema propuesto de cuatro dimensiones, Figura 2-5, y

señalaron que el número óptimo de dimensiones depende de lo que los investigadores

estén preguntando o interesando. No obstante, concluyeron que su estudio no puede

tomarse como una representación dimensional de la experiencia emocional, asegu-

raron que los modelos bidimensionales pasan por alto fuentes de variación emocional

clave, como el dominio de la emoción, y animaron a la comunidad investigadora a

aplicar tres o más dimensiones para desentrañar adecuadamente la complejidad de

la emoción.

Sin tener en cuenta el profundo debate que supone tener en cuenta las perspectivas

metateóricas discreta y dimensional, ya hay investigadores que proponen unirlas.

De hecho, los autores de [48] afirmaron que ambos modelos existen, pero cada uno

de ellos pretende explicar características diferentes de las emociones. Por ejemplo,
1unige.ch/cisa/files/7214/9371/2318/Grid_questionnaire_Aug_2013.pdf
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The four-dimensional structure of emotion derived in the

present research can be considered important because it is

based not only on a representative sample of prototypical

emotion labels, but also on a representative sample of features of

emotional experience. This is the first study that has included all

six of the major components of emotion identified by emotion

researchers. The explanations as to why the same two or three

emotion dimensions emerged in previous research were spec-

ulative. A major contribution of the present study is that it re-

covered the same three dimensions from a very precise analysis

of the meaning of emotion terms, as rated on 144 specific criteria

that most current emotion theorists explicitly assume are cen-

trally relevant to the domain of emotions. Moreover, basing a

dimensional analysis on comprehensive feature profiles for

Fig. 1. The four-dimensional solution representing the 24 emotion terms. Midpoints of the circles represent the mean coordinates across the three
languages. The diameter of each circle represents the mean euclidean distance among the coordinates for the three languages; the smaller the circle,
the more similar the respective terms across the languages. The three panels show plots of coordinates for (a) Evaluation-Pleasantness � Potency-
Control, (b) Evaluation-Pleasantness � Activation-Arousal, and (c) Evaluation-Pleasantness � Unpredictability.

Volume 18—Number 12 1055

J.R.J. Fontaine et al.

Figure 2-5: Los 24 términos emocionales se han mapeado en el esquema cuatridi-
mensional propuesto por Fontaine et al. en [5].

Jose A. Miranda, Tesis Doctoral 24



2.3. Clasificación de las emociones humanas

afirmaron que la supremacía de un método de clasificación sobre otro nunca estará

asegurada por la psicología de las emociones, lo que incluso se convierte en una

ventaja a la hora de desentrañar el comportamiento de las emociones, ya que con-

duce a aumentar la comprensión de las mismas al no excluir ninguna perspectiva o

información emocional. A lo largo de una revisión detallada, también afirmaron que

las emociones discretas pueden ser descompuestas mediante la inclusión de dimen-

siones dentro de ellas. Aunque este hecho específico ya fue propuesto inicialmente

por Plutchik [37] con su rueda multidimensional de las emociones y la variación de

la intensidad dentro de las emociones básicas, la combinación de estos dos enfoques

principales de clasificación podría ser explotada por la literatura hacia una mejor

comprensión psicofisiológica de las emociones. En cuanto al efecto de esta cuestión

a la hora de diseñar herramientas de reconocimiento de emociones para prevenir y

evitar situaciones de violencia de género, la combinación de ambos enfoques podría

impulsar una detección más consistente y una mejor comprensión de cualquier tipo

de emoción relacionada con el miedo. La combinación específica seguida en esta

investigación se detalla en la sección 2.3.4.

2.3.3 Rasgos personales, procesos cognitivos, atención y sesgo

de género
Además de las teorías emocionales humanas y de las clasificaciones de las emo-

ciones mencionadas y revisadas en la sección anterior, los pensamientos y las creen-

cias individuales son componentes que desempeñan un papel esencial dentro de las

respuestas emocionales y fisiológicas que también podrían considerarse al abordar

el diseño de cualquier sistema de reconocimiento de emociones. En realidad, estos

elementos cobraron relevancia con la aceptación y el auge de la psicología cognitiva

a partir de 1950. Sin embargo, a pesar de este hecho, la pregunta sin respuesta que

todavía rodea a muchas de las teorías emocionales humanas es el efecto específico

que la cognición tiene sobre las diferentes emociones [49]. Esto es aún más confuso

cuando la cognición converge con la valoración. Esta última se basa en una aso-

ciación automática de un estado afectivo (asociación emocional) ya sea con baja o

alta valencia, y es el núcleo de las diferentes teorías emocionales humanas como se

ha comentado anteriormente. Desde una perspectiva psicológica, el camino entre un
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proceso cognitivo o evaluativo y una reacción de appraisal puede derivar el uno del

otro y viceversa, ya que una evaluación puede ser un raciocinio de una asociación

emocional previa, y esta última puede ser también el producto de una evaluación

emocional posterior [50]. En este contexto subjetivo, los rasgos personales y la

atención e interpretación de los estímulos pueden afectar en gran medida a las re-

spuestas afectivas. En los últimos años, algunos estudios han intentado relacionar

los distintos grados principales de los cinco factores de la personalidad (extraversión,

neuroticismo, apertura a la experiencia, amabilidad y conciencia) con los procesos y

cambios emocionales de la vida cotidiana. Por ejemplo, Emma Komulainen et. al.

en [51] realizaron un experimento con 104 estudiantes universitarios (18 hombres, 86

mujeres) siguiendo un método de muestreo de experiencias en el que los estudiantes

informaron de diferentes métricas afectivas unas 10 veces al día a intervalos semi-

aleatorios. Observaron y concluyeron que los rasgos de personalidad pueden influir

en diferentes procesos emocionales. En concreto, destacaron que esos rasgos afectan

en gran medida a los trastornos depresivos, de ansiedad y de estrés, que están rela-

cionados con la respuesta afectiva negativa a los contextos de la vida cotidiana. Este

hecho guarda una profunda relación con diferentes conceptos neurofisiológicos que

están directamente relacionados con la cantidad de carga afectiva negativa que cada

individuo puede manejar [52]. Dicha carga se conoce como carga alostática y es

un factor crucial para empezar a entender las particularidades del perfil fisiológico

y emocional de las víctimas de la violencia de género, ya que están sometidas a

situaciones negativas crónicas (miedo, pánico, estrés) que conducen a la restricción

afectiva en contextos traumáticos con el objetivo de recuperar la homeostasis fisi-

ológica y el equilibrio conductual y proteger su integridad psicológica. Además, hay

que considerar y contabilizar las diferencias de género al añadir el sesgo de género al

problema del reconocimiento de emociones. Por ejemplo, está comprobado que las

mujeres son más sensibles a las expresiones interpersonales durante las interacciones

sociales que los hombres, lo que se acompaña de una diátesis del estado de ánimo e

incluso Post-Traumatic Stress Disorder (PTSD) [53–55].

Todos estos componentes plantean diferentes incertidumbres que hacen que el dis-

eño de un sistema inteligente de reconocimiento de emociones sea una tarea en la

que se tengan en cuenta los diferentes factores subjetivos emocionales individuales
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para conseguir un rendimiento óptimo. Por lo tanto, si se desarrolla un sistema de

reconocimiento de emociones utilizando información fisiológica y física, el uso de los

métodos de clasificación de emociones humanas revisados debería ir acompañado de

diferentes pruebas o cuestionarios que faciliten la dilucidación de los efectos produci-

dos por la cognición, la valoración, la atención, los rasgos de personalidad, el género

y la edad. Aunque en este trabajo de investigación no se tratan, cuantifican o tienen

en cuenta directamente estos factores subjetivos individuales, durante la realización

de la base de datos UC3M4Safety se ha recogido un conjunto de cuestionarios. En

el capítulo 6.

2.3.4 El mapa del miedo dentro de los métodos de clasifi-

cación de las emociones humanas
La emoción del miedo es una de las emociones básicas que son comunes a lo largo

de la mayoría de las diferentes clasificaciones categóricas de las emociones e incluso

representa una emoción distinguida clave para las clasificaciones dimensionales a la

hora de explicar las ventajas de tales modelos para tratar el desentrañamiento de la

emoción basado en la dominancia. Debido a la aplicación dirigida de este trabajo de

investigación, la comprensión adecuada de la delimitación discreta y dimensional del

miedo es esencial. En este sentido, la figura 2-6 ilustra una idea sobre este hecho. La

Low 

Fear

High 

Fear

𝑑1

𝑑2

𝑑1

𝑑2

𝑑3

𝑑4

Figure 2-6: De izquierda a derecha: concepto de miedo unidimensional (niveles de
intensidad discretos), miedo contenido en un espacio bidimensional (modelo PA),
conceptos tridimensionales (modelo PAD) y cuatridimensionales (modelo PAD más
cualquier dimensión intrínseca individual).

manera más fácil de considerar el miedo es adoptar una forma de factor unidimen-

sional discreto. Este método viene determinado por el número de divisiones o niveles

de intensidad del miedo que se desee. Al pasar a más dimensiones, disponemos de

más información para determinar y caracterizar inequívocamente el sector exacto
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del miedo. Por ejemplo, una percepción bidimensional, que puede estar relacionada

con el arousal y la valencia, puede definir un cuadrante específico en el que se ubi-

can las emociones negativas. En este caso, el número de niveles o divisiones en las

diferentes dimensiones repercute directamente en la incertidumbre de localización

exacta del miedo dentro de dicho cuadrante. Así, cuantas más divisiones, más limi-

tada o acotada es el área en la que se puede encontrar el miedo. Este último hecho

también supone un reto cuando los niveles de esas dimensiones se recogen directa-

mente de los voluntarios mediante el uso de métricas autoinformadas, ya que no es

factible ni pragmático ofrecer la posibilidad de elegir un número elevado de niveles.

Finalmente, como se comentó en la sección 2.3.2, el uso de tres dimensiones puede

beneficiar la separación de diferentes emociones que comparten dos de ellas. Hay

que tener en cuenta que añadir más dimensiones conduce a un espacio de búsqueda

multidimensional, lo que se traduce en un problema de optimización más complejo

para encontrar el punto dulce del miedo.

Específicamente para este trabajo de investigación, se utiliza una nueva fusión en-

tre modelos discretos y dimensionales para la detección del miedo. Así, tomando

como referencia el modelo PAD, se define que el miedo se localiza en baja valencia,

alta excitación y baja dominancia. A partir de esa localización multidimensional es-

pecífica, se realiza un mapeo binario emocional discreto etiquetando esa localización

como miedo y las otras como no miedo. Esta relación viene dada por la siguiente

función de Heaviside,

H(𝑥𝑖) = Θ(𝜀𝑖 − 𝑥𝑖) (2.1)

donde Θ : H → (0, 1) y 𝜀𝑖 es el umbral de miedo especificado de la dimensión

𝑖. Obsérvese que el resultado final del mapeo binario para el modelo propuesto se

obtiene realizando la siguiente operación lógica,

H(𝑃, 𝐴, 𝐷) = H(𝑃 ) ∧H(𝐴) ∧H(𝐷). (2.2)

Durante este trabajo de investigación, todos los experimentos realizados recogieron

etiquetas emocionales autoinformadas que se utilizaron para el mapeo binario del

miedo. En este caso, y siguiendo la literatura [49], se utilizó la misma escala Likert

de 1 a 9 para calificar cada una de las tres dimensiones. Por lo tanto, la distinción
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entre niveles bajos y altos se realizó en base a la mitad de la escala. Aunque se

encuentra una limitación en cuanto a que este nuevo enfoque asume que todo el

espacio cúbico formado por alta excitación, baja valencia y baja dominancia, está

directamente relacionado con la emoción categórica del miedo, es la primera vez que

se realiza una fusión entre los modelos discretos y dimensionales y se aplica utilizando

datos reales y emociones no actuadas. Teniendo en cuenta esta investigación como

base en este aspecto, se podrían desarrollar más investigaciones hacia una mejor

delimitación multidimensional y categórica de la emoción objetivo. En este sentido,

se podrían añadir más dimensiones para considerar factores individuales como los

rasgos de personalidad, el efecto de la cognición, los procesos de atención y el sesgo

de género. Dichas dimensiones producirían un cambio multidimensional del cubo del

miedo, lo que puede conducir a un mejor desentrañamiento y detección del miedo.

2.4 Herramientas para el análisis científico de las

respuestas emocionales humanas
Uno de los principales objetivos dentro de la comunidad de la computación afec-

tiva es la generación de nuevas bases de datos para facilitar y potenciar la tarea

de reconocimiento de emociones. Una base de datos de computación afectiva o de

reconocimiento de emociones puede definirse como un experimento de elicitación de

emociones con un conjunto de voluntarios, que autoinforman de las emociones senti-

das por un conjunto específico de estímulos. Además, entre estos componentes esen-

ciales, los distintos conjuntos de señales fisiológicas y físicas recogidos durante estos

experimentos específicos controlados, basados en el laboratorio, son fundamentales

para generar posteriormente modelos de reconocimiento de emociones utilizando esa

información como datos. Nótese que el objetivo subyacente es desentrañar los pa-

trones y variaciones de los datos fisiológicos y físicos observados en esos experimentos

con la ayuda de las diferentes etiquetas recogidas. Sobre esta base, se han presen-

tado y propuesto en la literatura diferentes herramientas, elementos y métodos para

proporcionar una elicitación de emociones eficaz dentro de esos experimentos. En

esta sección, se presentan y detallan estos factores para comprender el estado actual

de la técnica en este sentido. Hay que tener en cuenta que los analizados aquí se

aplican y utilizan en condiciones controladas o de laboratorio, lo que limita la apli-
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cación directa de los sistemas inteligentes resultantes a la validación sobre el terreno.

Este último hecho también conduce a la necesidad de generar bases de datos en la

naturaleza. En el capítulo 3 se detallan estas últimas consideraciones y se ofrece

una descripción y un análisis detallados de todos los componentes que intervienen

en la generación de una base de datos de reconocimiento de emociones. Además, en

esta sección, también se abordan y discuten los diferentes retos para proporcionar

una verdad básica de etiquetado de estímulos fiable.

Como se ha analizado en los apartados anteriores, los factores individuales son

clave en las emociones. Este hecho dificulta la obtención de la misma emoción para

un grupo de personas que están bajo el mismo experimento de la base de datos.

Aunque esto se suele abordar mediante protocolos experimentales bien definidos

dentro de un entorno controlado de laboratorio, estas incertidumbres de personal-

idad siempre presentan un sesgo subjetivo introducido por los voluntarios cuando,

por ejemplo, autoinforman de la emoción sentida. En general, podemos dividir el

tipo de estímulos utilizados en dichos protocolos en dos grupos principales: actua-

dos y no actuados. Los primeros son interpretados mayoritariamente por actores y

actrices entrenados, que siguen un "guión de elicitación emocional" [56]. Indepen-

dientemente de la capacidad de los actores y actrices para profundizar en el estado

emocional solicitado, esto se traduce en una forma sintética de generar estados afec-

tivos que conduce a una respuesta autónoma no plenamente emocional. Por ello,

en la literatura se prefieren los estímulos de tipo no actuado. Estos y sus princi-

pales características se resumen en la tabla 2.2. Existen principalmente seis tipos

diferentes de estímulos no actuados, que van desde la imaginería hasta el Virtual

Reality (VR). Algunos de ellos proporcionan una sensación estática al no involucrar

completamente a la persona en el entorno emocional deseado, mientras que otros

proporcionan esa posibilidad. También se encuentran diferencias con respecto a los

procesos cognitivos, conductuales y físicos desencadenados por dichos estímulos. De

entre todos los estímulos, destaca el VR por ofrecer la sensación más cercana a los

escenarios del mundo real, lo que se traduce en un alto grado de correlación entre las

condiciones de la investigación y el fenómeno emocional estudiado (validez ecológ-

ica). Estos hechos llevaron al equipo de UC3M4Safety a desarrollar un entorno VR

con estímulos 2D y 3D para ser utilizado durante la realización de los diferentes
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Table 2.2: Revisión del tipo de estímulo utilizado en entornos de laboratorio con-
trolados.

Tipo de estímulo Características Ejemplos

Imágenes
Estímulos estáticos, componentes cognitivos, [58], [59], [60]

la visualización de la duración es clave, mejores [61], [62], [63]
para la identificación emocional

Videos
Estímulos estáticos, componentes comportamentales y cognitivos, [64], [65], [66]

la visualización de la duración es clave, pueden [67], [68], [12]
proporcional mejor inmersión emocional que las imágenes

Juegos
Estímulos dinámicos, componentes comportamentales y cognitivos,

latencia entre las acciones de la usuaria [69], [70], [71]
y el juego son claves

Tests de Estímulos estáticos y dinámicos, cognitivos, [72], [73], [74]
Estrés comportamentales, y físicos, alto acuerdo [75], [76]

en la literatura sobre estos tests

VR
Estímulos estáticos y dinámicos, coginitivos y comportamentales [77], [78], [79]

cercanos a escenarios de la vida real, ofrecen la mejor [80]
validación ecológica

conjuntos de datos [57]. En el capítulo 6 se ofrecen más detalles.

A pesar de la variedad de tipos de estímulos, uno de los mayores retos que implica la

elicitación de emociones para el diseño de sistemas de reconocimiento de emociones

es la obtención de una verdad de base fiable, es decir, determinar adecuadamente

qué emociones (etiquetas) evocan qué estímulo. La evaluación de la verdad de base

es en realidad una de las partes más críticas dentro del diseño de esos sistemas

[81]. De hecho, ese proceso es de suma importancia y afectará en gran medida al

entrenamiento y al rendimiento de la inferencia posterior del sistema consciente de

los afectos. Por ejemplo, cuando se entrena un algoritmo de aprendizaje automático

utilizando las etiquetas de la verdad sobre el terreno, la información que se suministra

a dicho algoritmo hereda la distribución de dichas etiquetas, lo que puede sesgar

en gran medida los patrones de datos originales subyacentes. Para hacer frente a

este tipo de problemas, existen diferentes estrategias o metodologías para recoger la

verdad sobre el terreno que incluso se utilizan conjuntamente dentro del experimento.

Así, en la literatura se han propuesto diferentes métodos para obtener datos fiables

de autoevaluación emocional. Una de las metodologías más utilizadas y fiables para

recoger la verdad del terreno se basa en una conocida técnica pictórica no verbal, se

trata del SAM [6]. La representación original puede verse en la figura 2-7. Se basa

en el espacio PAD (valencia, arousal y dominancia, respectivamente de la primera

a la tercera fila) y en una escala de Likert de 1 a 9, en la que el centro de la escala

se relaciona con un estado afectivo neutro. Sin embargo, se puede observar que esta
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Figure 2-7: SAM original [6].

Figure 2-8: SAM modificado por el equipo UC3M4Safety.

representación original muestra mayoritariamente líneas rectas y una actitud muy

masculina que puede afectar al etiquetado para las mujeres. Por lo tanto, el equipo

de la UC3M4Safety modificó la SAM con el fin de proporcionar un menor sesgo de

género. Hay que tener en cuenta que esta modificación se realizó en base a un panel

de expertos en violencia de género [82]. El nuevo SAM resultante se muestra en la

figura 2-8.

A modo de resumen de este apartado, podemos afirmar que las bases de datos de

reconocimiento de emociones son necesarias para generar sistemas de computación

afectiva, pero también son imprescindibles para estudiar las diferencias de respuestas

emocionales en función de factores físicos, fisiológicos, de género, personales y de otro

tipo de interés. Además, existe un amplio abanico de herramientas y métodos que

facilitan dicho proceso de generación de sistemas de computación afectiva y, aunque
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son mejorables para evitar posibles sesgos (por ejemplo, de género), el estado del

arte en este sentido es sólido y fiable.

2.5 Indicadores fisiológicos de las respuestas de

las emociones humanas
Como se detalla en la sección 1.2, uno de los principales objetivos de este trabajo

de investigación es desentrañar las relaciones entre las señales fisiológicas y las emo-

ciones negativas, por ejemplo, el miedo, para proporcionar los primeros pasos hacia

una detección automática de situaciones de riesgo en un contexto de violencia de

género y/o acoso sexual. Para lograrlo, es necesario recopilar, comprender y aplicar

a cualquier tecnología que se desarrolle un profundo conocimiento de la actividad

fisiológica del cuerpo humano en el marco de las respuestas emocionales.

En primer lugar, las señales fisiológicas son manejadas por el Autonomous Ner-

vous System (ANS) y, por tanto, no pueden ser manipuladas por la voluntad hu-

mana [83, 84]. Este hecho ha llevado a la literatura a proponer y proporcionar

diferentes arquitecturas fiables de sistemas conscientes del afecto utilizando única-

mente información fisiológica [85]. Sin embargo, en cuanto a los modelos y teorías

emocionales, existen posturas contrarias en cuanto a la activación y comportamiento

específico del ANS ante las diferentes emociones [86, 87]. Para este trabajo de in-

vestigación, seguimos una de las últimas afirmaciones sobre la activación del ANS

ante las emociones [88], que se basa en la actividad diferenciada del ANS para la

preparación de la conducta y la protección del cuerpo con respecto a las diferentes

emociones, que es esencial para la adaptación humana. Esto está profundamente

interrelacionado con el funcionamiento del cerebro al recibir estímulos externos. De

hecho, la activación del ANS es consecuencia de los circuitos internos entre las

diferentes partes del cerebro que se encargan de decodificar esos estímulos y desen-

cadenar los mecanismos necesarios para adaptarse adecuadamente a ellos. Dos de

las partes principales son la amígdala y el hipotálamo, Figura 2-9. La primera es la

responsable del procesamiento emocional, mientras que el segundo funciona como

un centro de mando. Así, en caso de un estímulo externo amenazante, la amígdala

envía una señal de socorro al hipotálamo, que activa el Sympathetic Nervous Sys-

tem (SNS) a través de las glándulas suprarrenales. Obsérvese que el SNS es la rama

33 Jose A. Miranda, Tesis Doctoral



Capítulo 2. Emociones y fisiología

del ANS responsable de la conocida respuesta de lucha o huida. Finalmente, esas

glándulas liberan diferentes catecolaminas (por ejemplo, epinefrina) que provocan

una serie de cambios y reacciones fisiológicas. Una vez que la amenaza desaparece,

el Parasympathetic Nervous System (PNS) toma el mando actuando como descanso

de las reacciones fisiológicas anteriores (homeostasis). Nótese que el PNS es la rama

del ANS responsable de la conocida respuesta de reposo y digestión. Aunque estos

comportamientos y características biológicas están mayoritariamente consensuados

en la literatura, sigue existiendo un gran interés investigador por aportar experi-

mentos empíricos sobre alguno de los hechos comentados [89]. Como consecuencia

de ello, el estudio del desentrañamiento emocional-fisiológico en la literatura se ha

realizado de forma intensiva desde 1950, ya que diferentes investigadores intentaban

abordar las teorías emocionales y comprender los cambios en las variables fisiológicas

debidos a las respuestas emocionales [90].

Amygdala

and 

Hipothalamus zone

Figure 2-9: Location of the two main parts, amygdala and hypothalamus, involved
in the emotional processing and autonomous nervous system regulation.

Esta sección proporciona una revisión detallada sobre el nexo entre las variaciones

fisiológicas y las emociones negativas, destacando específicamente aquellos sistemas

en la literatura dirigidos a la detección del miedo. Además, debido a la naturaleza

portable del sistema presentado en este trabajo, sólo se cubren las tres variables

fisiológicas que pueden ser hoy en día más aptas para ser vestibles o portables (as-

pecto discreto). A pesar de este estudio, todavía hay muchos factores, como los

inherentes al individuo, que pueden afectar directamente a la morfología de la señal

fisiológica y, por tanto, a los patrones subyacentes asociados a las emociones negati-

vas. Estos componentes, como la edad, el género, las condiciones cardiovasculares,
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la carga alostática y otros, no solían ser considerados en la literatura a la hora de

diseñar sistemas de reconocimiento de emociones. Así, en esta sección y en los capí-

tulos siguientes, analizamos y abordamos la influencia que esos elementos pueden

tener en la morfología de las señales y damos algunas ideas para tratarlos desde la

perspectiva de los sistemas digitales.

Antes de entrar en detalles sobre cada una de las señales fisiológicas que se van

a analizar y estudiar, hay que destacar la naturaleza de la información fisiológica,

ya que afecta en gran medida a las técnicas aplicadas para extraer los indicadores

fisiológicos afectivos o métricas fisiológicas emocionales. Como cualquier otro sis-

tema biológico complejo, las señales fisiológicas humanas poseen un comportamiento

no lineal y no estacionario [91]. Sin embargo, al estar destinadas a ser procesadas

digitalmente dentro de una plataforma embebida específica, se utilizan ventanas de

procesamiento de longitud fija para extraer los diferentes indicadores o métricas,

lo que lleva a considerar la fisiología como cuasi-estacionaria cuando se trata de

ventanas de procesamiento cortas. Últimamente, aunque este último hecho puede

restringir el uso de técnicas de procesamiento lineal, la aplicación de técnicas no

lineales está teniendo mucho éxito en los actuales sistemas de reconocimiento de

emociones basados en información fisiológica [26] y está impulsando la comprensión

de los sistemas biológicos complejos tanto en salud como en enfermedad [92]. Por

ello, en los siguientes apartados, así como en los siguientes capítulos, se considera

esencial el comportamiento fisiológico no lineal.

2.5.1 Actividad cardiovascular
La actividad cardíaca es una de las informaciones fisiológicas más utilizadas para

generar sistemas de reconocimiento de emociones [26, 49]. Las diferentes fases de

los latidos, que se traducen en diferentes presiones sanguíneas dentro de las paredes

musculares de los vasos sanguíneos, permiten monitorizar las variaciones o cambios

tanto simpáticos como parasimpáticos [8]. Desde una perspectiva puramente fisi-

ológica, por un lado, la presión arterial más alta se alcanza durante la fase sistólica,

en la que el corazón se contrae para forzar la sangre a través de las arterias. Por otro

lado, la presión más baja se alcanza durante la fase diastólica, en la que el corazón

vuelve a llenarse de sangre. Esta información se ve muy afectada por la dieta del

individuo, la edad y las posibles enfermedades cardíacas [93, 94]. Independiente-
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mente del tipo de estos factores intrasujeto, todos ellos conducen a modificaciones

morfológicas respecto a una forma de onda ideal esperada. Estas modificaciones

se deben principalmente a los cambios de resistencia de los vasos sanguíneos per-

iféricos, que van desde diferentes niveles de vasoconstricción a diferentes niveles de

vasodilatación [95]. Para este trabajo de investigación, siendo el miedo la emoción

objetivo a detectar, es necesaria la comprensión de estos principios fisiológicos, ya

que está demostrado que los estímulos de miedo aumentan la resistencia periférica

total conduciendo a un aumento de la vasoconstricción. Esto último es esencial

para distinguir adecuadamente los patrones fisiológicos basados en el miedo de los

basados en cualquier otra emoción [85,96].

La adquisición de esta información fisiológica puede realizarse mediante diferentes

sensores de forma no invasiva como el ECG, la fotopletismografía (PPG), y de forma

invasiva como el catéter arterial. Debido a los requisitos de portabilidad, bajo con-

sumo y discreción del sistema propuesto, nos centramos en los sensores PPG. Se

basan en un método de medición óptica que emplea una fuente de luz (un único

Light Emitting Diode (LED) o una matriz de LEDs) y un fotodetector que se sitúan

en la superficie de la piel para medir el BVP. Existen dos tipos de sensores de PPG,

de reflexión y de transmisión. La figura 2-10 muestra un ejemplo de estos métodos

ilustrando cuál es la diferencia con respecto al recorrido que tienen a través de las

diferentes capas de la piel. En el modo de reflexión, el fotodetector recibe la luz

emitida que ha sido retrodispersada o reflejada por el efecto banana de las capas

interiores [97,98], mientras que en el modo de transmisión, el fotodetector está com-

pletamente opuesto al LED y recibe la luz transmitida que atraviesa todas las capas

de la piel. La principal diferencia a la hora de obtener la señal de ambos métodos es

el comportamiento invertido que presenta la reflexión PPG debido al retroceso de

la luz reflejada recibida. Para este trabajo de investigación, nos centramos princi-

palmente en el modo de reflexión debido al aspecto wearable y a que la mayoría de

los sensores PPG disponibles son de este tipo.

Por lo tanto, centrándonos en el modo de reflexión, cabe destacar que la intensidad

de la luz que recorre las diferentes capas decae exponencialmente. En concreto, esta

afirmación se explica por la Ley de Lamberts-Beer [99], que se aplica para mode-

lar adecuadamente la intensidad de luz recibida por el fotodetector de la siguiente
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Figure 2-10: Ilustración de las dos técnicas de medición del PPG, reflexión y trans-
misión. Obsérvese que la señal obtenida está invertida en un método con respecto
al otro.

manera:

𝐼 = 𝐼𝑖𝑛𝑒−𝜆𝑡, (2.3)

donde 𝜆 es la longitud de onda de una luz específica, 𝐼 es la luz total detectada

por el fotodetector y 𝐼𝑖𝑛 es la luz transmitida o incidente. Sabiendo que 𝜆 puede

expresarse como una relación directa entre el coeficiente de absorción del medio y

la longitud del trayecto, y que el primero puede dividirse en contribución tisular

no pulsátil (componente DC) y pulsátil (componente AC), la ecuación 2.3 también

puede expresarse como

𝐼 = 𝐼𝑖𝑛𝑒−(𝜇𝐴𝐶𝑑(𝑡)+𝜇𝐷𝐶𝑚), (2.4)

donde 𝜇𝐴𝐶 y 𝜇𝐷𝐶 son los coeficientes de absorción para los tejidos pulsátiles y no

pulsátiles, respectivamente, y 𝑑(𝑡) y 𝑚 son las longitudes del recorrido de la luz a

través de dichos componentes. Además, la intensidad de la luz incidente también

puede separarse en la intensidad reflejada estática, 𝐼𝑟𝑓 , y la intensidad del efecto

banana, 𝐼𝑏, como sigue:

𝐼 = 𝐼𝑟𝑓 + 𝐼𝑏𝑒
−(𝜇𝐴𝐶𝑑(𝑡)+𝜇𝐷𝐶𝑚). (2.5)
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Así, a partir de la ecuación 2.5, la relación entre la componente de CC y CA viene

dada por:
𝐴𝐶

𝐷𝐶
= 𝐼𝑏𝑒

−(𝜇𝐷𝐶𝑚)𝜇𝐴𝐶𝑑(𝑡)

𝐼𝑟𝑓 + 𝐼𝑏𝑒−(𝜇𝐷𝐶𝑚) . (2.6)

En caso de suponer que la luz reflejada es despreciable, la amplitud de la compo-

nente AC normalizada sería directamente proporcional a la longitud del recorrido

de la luz arterial dinámica. Este supuesto es el caso ideal, en el que la relación

CA/CC se maximiza, sin embargo, en las aplicaciones reales, el hueco espacial en-

tre el acLED y el fotodetector y entre el sensor y la piel (hueco de aire) afectará

al componente de CC y minimizará la contribución de CA. Este problema se solía

abordar aplicando estructuras de bloqueo de la luz en los sensores PPG y mini-

mizando el entrehierro [100, 101]. Hay que tener en cuenta que la ubicación del

sensor es igualmente importante en este asunto [102]. Estos conceptos revisados

y los fundamentos para la medición de PPG son esenciales para diseñar adecuada-

mente sistemas vestibles eficientes sometidos a integrar dicha tecnología de sensores.

En el capítulo 6 se ofrecen más detalles sobre cómo tratar el ruido de las señales de

ácnumeros.

Desde el punto de vista del procesamiento de señales, una señal PPG contiene

diferentes características o métricas que pueden ser extraídas y analizadas para

decodificar su relación con las emociones. En este trabajo, distinguimos entre car-

acterísticas temporales, frecuenciales y no lineales. Independientemente del tipo

específico de características a extraer, se requiere el análisis morfológico de la señal

para obtener los puntos característicos necesarios PPG. La figura 2-11 muestra un

ejemplo morfológico de dos periodos de frecuencia cardiaca en los que aparecen las

dos fases de actividad cardiaca comentadas anteriormente: sistólica y diastólica.

Además de los picos sistólico y diastólico, existen otros puntos característicos que

afectarán al proceso de delineación de esta señal. Por ejemplo, la predicción o in-

cisura, que es el producto de las reflexiones de la pared arterial, puede verse en la

señal de PPG también justo antes de la muesca dicroica. Esta morfología sensible y

variable hace que la monitorización del PPG sea un reto. De hecho, recientemente

en [103], los autores presentaron un estudio comparativo con un grupo de 53 in-

dividuos que recogían datos de PPG de seis wearables diferentes de consumo y de

investigación. Compararon la frecuencia cardíaca proporcionada por estos disposi-
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Figure 2-11: Ejemplificación de los diferentes puntos característicos a extraer dentro
de la morfología de la señal PPG.

tivos con la frecuencia cardíaca real obtenida mediante un electrocardiograma. El

experimento dio como resultado un error medio máximo de 15,9 ±8, 1 Beats Per

Minute (BPM), siendo el tipo de dispositivo y la actividad de ejercicio los factores

que más afectan a la frecuencia cardíaca estimada. Nótese que este error es relevante

si se quiere aproximar a una norma análoga de equipos médicos como la UNE-EN

60601-2-27, que establece que el error máximo para equipos clínicos es de 5 BPM.

Este problema observado se debe a diferentes aspectos:

• La mayoría de los wearables, ya sean de consumo o de investigación, no es-

tán pensados ni diseñados para adquirir datos PPG clínicos o de diagnóstico

(donde la morfología está totalmente preservada), sino que obtienen datos

PPG básicos de calidad. Este hecho se traduce en una morfología muy vari-

able que incluso depende del dispositivo por consideraciones electromecánicas

específicas.

• Cada wearable utiliza un algoritmo propio para extraer los puntos característi-

cos y calcular la frecuencia cardíaca. Este hecho se traduce en una variabilidad

entre las mediciones de los distintos dispositivos.

• Los artefactos de movimiento modifican fuertemente la morfología de la señal

PPG. Algunos de estos dispositivos implementan técnicas para hacer frente a

ello, mientras que otros no lo hacen.

Por lo tanto, a pesar de la proliferación de los sensores de PPG y su aceptación por

parte del sector privado debido a la mejor integrabilidad y rentabilidad que el ECG,
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sigue existiendo una necesidad metodológica de delineación y estándares de Motion

Artifact Removal (MAR). Generalmente, cuando se quiere extraer la frecuencia

cardiaca o el periodo de la señal PPG, los picos sistólicos o los valles diastólicos finales

son una opción válida para obtener dicha periodicidad. Obsérvese que el ancho de

banda máximo de la frecuencia cardíaca es de aproximadamente 0,6-3,5 Hz, lo que

equivale a 36-210 BPMs. Por lo tanto, en el peor de los casos para la frecuencia de

actividad cardíaca más lenta cuando se dispone de recursos digitales limitados, es

decir, dispositivos wearables limitados, el uso de una ventana de procesamiento de

dos segundos asegura encontrar al menos dos picos sistólicos o dos picos diastólicos

finales. Como ya se ha comentado, la mayoría de las características se calculan a

partir de estos puntos. Para este trabajo de investigación, se ofrecen más detalles

sobre los algoritmos específicos de delineación, la extracción de características y las

técnicas MAR utilizadas en los capítulos. 4 and 5.

En cuanto a la relación entre la actividad cardíaca y la emoción del miedo, ex-

iste una amplia gama de publicaciones en la literatura [104–110]. Algunas de las

publicaciones intentaron diferenciar entre emociones positivas y negativas basándose

únicamente en la información extraída de la frecuencia cardíaca, mientras que otras

consideraron indicadores afectivos más fisiológicos a partir de diferentes variables

fisiológicas, por ejemplo, indicadores electrodérmicos o de cardiorrespiración. Por

un lado, la mayoría coincidió en que la emoción de miedo provoca un aumento de la

aceleración cardíaca, vasoconstricción, disminución del flujo sanguíneo y aumento de

la presión arterial tanto sistólica como diastólica. Por otro lado, los que incluyeron

más variables fisiológicas reclamaron la necesidad de considerar más información que

la actividad cardíaca debido a la relación directa observada entre métricas especí-

ficas de la frecuencia cardíaca, como la variabilidad de la misma, y el aumento de

la frecuencia respiratoria o los diferentes niveles de actividad electrodérmica. Hay

que tener en cuenta que, aunque existe un conocimiento bien establecido en la liter-

atura con respecto a los efectos de la actividad cardíaca producidos por el miedo, los

experimentos se realizan en laboratorio, donde las condiciones están bajo control.

2.5.2 Actividad Electrodérmica
La actividad electrodérmica (EDA) o respuesta galvánica de la piel (GSR) es, junto

con la actividad cardíaca, una de las señales fisiológicas más estudiadas que, además,
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ha recibido un importante avance en su comprensión y conexión con las respuestas

emocionales [111, 112]. Aunque hay más de un tipo de glándulas implicadas en

este proceso, las principales responsables de la EDA son las glándulas sudoríparas

ecrinas o merocrinas, que están controladas por el SNS. Éstas se encuentran en la

piel y están inervadas únicamente por axones de la rama simpática (fibras nerviosas

sudomotoras largas). Obsérvese que cada axón inerva alrededor de 1, 28𝑐𝑚2 de piel

[113]. La figura 2-12 muestra un ejemplo ilustrativo de estas entidades distribuidas

en las diferentes capas de la piel. El hecho de que estas glándulas estén inervadas

únicamente por el SNS hace que el EDA sea el candidato perfecto para cuantificar la

actividad del SNS (lucha y huida) y, aunque la sudoración también juega un papel

importante en la termorregulación para conseguir una homeostasis adecuada, está

demostrado que los diferentes cambios en la conductividad de la piel están fuerte

y directamente correlacionados con la intensidad de la emoción evocada por los

estímulos externos. Muchos autores aseguran que dichos cambios están relacionados

con el nivel de arousal [85, 112, 114]. En cuanto a la evolución de la forma de esos

cambios con respecto al tiempo, el EDA está formado por un componente tónico y

otro fásico. El primero es un componente que varía lentamente, el Skin Conductance

Level (SCL), mientras que el segundo es el Skin Conductance Response (SCR) rápido

en el tiempo. Obsérvese que la teoría fisiológica que subyace a estos cambios o

variaciones de la EDA se basa en la difusión y la apertura de los poros que plantea

el modelo de válvula poral de Edelberg [115].

Stratum Corneum

Epidermis

Dermis

Sudomotor Nerve Fibers

Eccrine Gland

Diffusion + Pore opening

Figure 2-12: Ilustración del comportamiento de las glándulas merócrinas y del pro-
ceso de difusión a través de las diferentes capas de la piel.

La adquisición de esta información fisiológica puede realizarse principalmente me-
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diante dos técnicas diferentes: la endosomática y la exosomática. Por un lado, la

primera se basa en la medición del potencial electrodérmico mediante dos electrodos

sin aplicar ni corriente ni tensión entre ellos. Por otro lado, la segunda se basa en

la medición de la resistencia o conductancia electrodérmica mediante dos electro-

dos aplicando un pequeño voltaje o corriente entre ellos. A lo largo de los años, se

han estudiado ambos métodos, aunque la complejidad de las ondas y la difícil inter-

pretación de la metodología endosomática han llevado a una amplia aceptación y uso

de las mediciones exosomáticas [116]. Así, las técnicas exosomáticas se caracterizan

por utilizar una fuente de electricidad directa o alterna a través de circuitos activos

o pasivos [117]. En primer lugar, debido a la fuerza electromotriz en la superficie

de los electrodos, el uso de corriente continua puede provocar la polarización de los

mismos. Este problema puede mitigarse con CA. Sin embargo, la aplicación de una

tensión de fuente superior a 100 mV y el uso de electrodos de Ag/AgCl también

minimizan los problemas de polarización cuando se utiliza la CC. En segundo lugar,

las técnicas de CA conducen a una implementación de circuitos más compleja, lo

que se debe principalmente al hecho de que hay que preservar tanto la información

independiente como la dependiente de la frecuencia, así como a la aplicación de

técnicas digitales posteriores para recuperar las partes real e imaginaria de dichas

mediciones. Nótese que el término dependiente de la frecuencia se refiere en realidad

al comportamiento de la susceptancia de la piel [118]. Por último, cabe señalar que

la cantidad de resultados de investigación que consideran las técnicas exosomáticas

de CC es excepcional en comparación con las de CA y, aunque la CA podría superar

a la CC, es necesario realizar más investigaciones para demostrar este predominio.

De hecho, hoy en día las técnicas de CC se han establecido como un estándar de facto

para la adquisición de EDA [119]. La tabla 2.3 resume las principales diferencias

analizadas entre ambas técnicas exosomáticas.

Table 2.3: Principales diferencias entre las mediciones exosomáticas de CC y CA.
Propiedades CC CA

Polarización de los electrodos ≈ ✓

Circuitería sencilla ✓ ✗

Información de la conductancia ✓ ✓

Información de la susceptancia ✗ ✓

Independiente de la frecuencia ✓ ✗

Cantidad de investigación ✓ ≈
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Por lo tanto, centrándose en las mediciones exosomáticas de CC, se pueden utilizar

diferentes circuitos electrónicos activos y pasivos. Una de las implementaciones

más sencillas se realiza utilizando divisores de tensión simples compuestos por una

resistencia fija y otra variable. Esta última es la piel humana. Sin embargo, esta

técnica es propensa a errores de medición muy perceptibles debido a la diferencia

entre la fuente de tensión y la tensión a medir, que hace que esta última no sea

constante. De hecho, para la monitorización de la EDA se utiliza ampliamente la

circuitería activa, ya que mitiga estos problemas y proporciona un mayor control

sobre la medición. Convencionalmente, se emplean métodos de corriente y tensión

cuasi-constantes aprovechando las configuraciones de amplificadores operacionales

inversores y no inversores. Por ejemplo, la Figura 2-13 representa una configuración

inversora como un posible ejemplo de tales disposiciones. En el caso de que los

electrodos se coloquen dejando la resistencia de entrada 𝑅𝑖 como la piel, se aplica

una tensión casi constante que produce que el valor de la conductancia de la piel sea

proporcional a la tensión de salida del circuito. Por el contrario, si la resistencia de

retroalimentación 𝑅𝑓 es la piel, se aplica una corriente cuasi-constante sobre ella y la

tensión de salida resultante es proporcional al valor de la resistencia. Nótese que para

ambas configuraciones, el límite de corriente debe ajustarse ya sea sintonizando las

tensiones de entrada y referencia o la resistencia de entrada, respectivamente. Estos

ajustes deben asegurar una corriente en todo el cuerpo no superior a 10𝜇𝐴/𝑐𝑚2, que

es el nivel de densidad de corriente recomendado para las medidas de EDA [120].

Además, hay que destacar también la referencia común a la salida y a la entrada,

que tiene por objeto evitar cualquier contaminación endosomática de la medición

exosomática a realizar. En la literatura se pueden encontrar diferentes propuestas de

circuitos EDA basados en configuraciones de op-amp inversor [121–123]. Obsérvese

que estos circuitos solían ir seguidos de otros circuitos de acondicionamiento de

op-amp para ajustar la señal y filtrarla antes de la adquisición.

Independientemente de la circuitería activa utilizada, y además del compromiso de

sintonización para asegurar un límite de corriente de seguridad, la relación entre el

rango y la sensibilidad es especialmente relevante cuando se mide esta señal fisiológ-

ica debido al rango relativamente amplio (de 0 µS a 25 µS) y la sensibilidad de 0.01 µS

que hay que satisfacer para registrar adecuadamente todo el SCR dentro de los com-
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Figure 2-13: Ejemplo de configuración de un amplificador operacional inversor para
la adquisición de DC EDA exosomática.

ponentes tónico y fásico de la señal EDA [112]. Para solucionar este problema, se

puede aplicar un circuito de puente de Wheatstone. En ese caso, llegando a la

calibración del puente entre las dos ramas, es decir, mediante el ajuste de un poten-

ciómetro en la rama del puente opuesta a la resistencia de la piel humana, de forma

que la diferencia de potencial sea cero o una determinada tensión deseada [124]. Una

vez que el circuito se encuentra en ese estado, las perturbaciones de la diferencia de

potencial son el SCR, y el SCL puede obtenerse a partir de la calibración del puente.

Aunque este método puede, de hecho, proporcionar una medida fiable y asegurar

un rango y una sensibilidad adecuados ajustando en tiempo de ejecución algunas

de las resistencias (potenciómetro), no ha sido totalmente adoptado ni ampliamente

utilizado en la literatura. Para este trabajo de investigación, se adopta un circuito

activo exosomático de CC. Más detalles se dan en el capítulo 6. Hay que tener en

cuenta que existen otras opciones para la adquisición exosomática de CC, como los

amplificadores acoplados a la CA y los circuitos de retroalimentación, sin embargo,

ofrecen una mayor complejidad de los circuitos.

Desde el punto de vista del procesamiento de la señal, una de las primeras tareas

a realizar tras la adquisición es aplicar un filtrado básico de paso bajo y separar

adecuadamente los componentes tónicos y fásicos (SCL y SCR). Ambos son igual

de importantes en lo que respecta al desentrañamiento de la emoción, por lo que se

desea su conservación a lo largo de la adquisición analógica y la manipulación digital.
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Sin embargo, el componente fásico es el que contiene el ERSCR, que se traduce

en diferentes ráfagas de EDA que se relacionan emocionalmente con los estímulos

externos y se caracterizan por diferentes métricas basadas en el nivel de excitación

real evocado. Así, la descomposición tónica y fásica está destinada principalmente a

la correcta identificación y análisis de los ERSCRs. Nótese que el componente fásico

también puede presentar un Nonspecific Skin Conductance Response (NSSCR), que

se produce en ausencia de un estímulo elicitador identificable. Se pueden asumir

diferentes umbrales para la métrica de cada pico SCR detectado para determinar la

distinción entre ERSCRs y NSSCRs [125]. La figura 2-14 muestra un ejemplo de un

ERSCR y algunas de las métricas que pueden extraerse de él. Para este trabajo de

investigación, a lo largo de los siguientes capítulos se ofrecen más detalles sobre las

características específicas extraídas.
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Figure 2-14: Un ejemplo ilustrativo de una ERSCR y algunas de las métricas que se
pueden extraer de ella (Stimulus - Estímulo, Latency - Latencia, Onset - Punto de
inicio, Rise Time - Tiempo de subida, Response Peak - Pico de respuesta, Recovery
time - Tiempo de recuperación, Half Recovery - Mitad de recuperación, Offset -
Punto de parada).

Uno de los métodos más sencillos para superar la descomposición tónica y fásica

de la señal EDA es asumiendo una combinación lineal de estas dos, tal y como da

la siguiente aproximación:

𝐸𝐷𝐴𝑡𝑜𝑡𝑎𝑙 ≈ 𝐸𝐷𝐴𝑡𝑜𝑛𝑖𝑐 + 𝐸𝐷𝐴𝑝ℎ𝑎𝑠𝑖𝑐, (2.7)

donde 𝐸𝐷𝐴𝑡𝑜𝑡𝑎𝑙 es la señal filtrada, 𝐸𝐷𝐴𝑡𝑜𝑛𝑖𝑐 es el componente de baja frecuencia

o la tendencia asociada al SCL, y 𝐸𝐷𝐴𝑝ℎ𝑎𝑠𝑖𝑐 es la señal resultante que contiene

los diferentes SCR. Así, restando la tendencia de la señal filtrada y aplicando una

técnica de trough to peak(basada en los picos), se pueden extraer todos los picos
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relevantes de la señal. Obsérvese que mediante dicha sustracción se obtiene una

componente de la señal pseudofásica. En concreto, se puede obtener 𝐸𝐷𝐴𝑡𝑜𝑡𝑎𝑙 apli-

cando un filtro FIR de paso bajo con una frecuencia de corte de 1, 5Hz, que se

selecciona en base a que la información de EDA queda por debajo de ella [112].

Posteriormente, la obtención de la 𝐸𝐷𝐴𝑡𝑜𝑛𝑖𝑐 puede realizarse implementando un fil-

tro de mediana móvil utilizando una ventana lo suficientemente amplia como para

capturar la tendencia por debajo de 0, 05Hz [125]. Aunque esta técnica puede im-

plementarse de forma sencilla y no tiene un efecto negativo en el almacenamiento

ni en la limitación de recursos, es sólo una aproximación y se enfrenta a diferentes

problemas. Por un lado, el componente fásico resultante puede ser negativo, lo que

nunca debería ocurrir desde una perspectiva fisiológica. Por otro lado, este método

no tiene en cuenta ni trata el solapamiento de SCRs, lo que puede llevar a una

subestimación de las diferentes amplitudes de pico de respuesta. Por lo tanto, este

método se recomienda como punto de partida. A lo largo de los últimos años han

aparecido en la literatura otros desarrollos acompañados de herramientas automa-

tizadas, como Ledalab [126], que recogen los diferentes algoritmos más utilizados

para potenciar su aplicabilidad en la investigación de EDA. Por encima de estos

algoritmos encontramos cvxEDA [127] y SparsEDA [128]. El primero está motivado

por el método de deconvolución introducido por Alexander et. al. [129], en el que

afirmaron que el Sudomotor Nerve Activity (SMNA) posee una constante de tiempo

más corta que la propia señal EDA y produce ráfagas (difusión de poros) que llegan

como eventos separados y discretos. Aplicaron una técnica de deconvolución medi-

ante una función biexponencial que abordaba el problema del solapamiento de SCR.

Así, considerando esa base y manejando el problema de la racionalidad negativa de

la componente fásica, cvxEDA utiliza una optimización convexa que está restringida

por la sparsity y la no negatividad de la SMNA, que modifica la ecuación 2.7 como

sigue:

𝐸𝐷𝐴𝑡𝑜𝑡𝑎𝑙 = 𝐼𝑅𝐹 * (𝐷𝑟𝑖𝑣𝑒𝑟𝑡𝑜𝑛𝑖𝑐 + 𝐷𝑟𝑖𝑣𝑒𝑟𝑝ℎ𝑎𝑠𝑖𝑐), (2.8)

donde 𝐼𝑅𝐹 se identifica como la función biexponencial de respuesta al impulso

de Bateman, y los 𝐷𝑟𝑖𝑣𝑒𝑟𝑠 son la información procedente del SMNA. Este algo-

ritmo se ha aplicado con éxito a diferentes casos de investigación de EDA. Sin

embargo, aunque la operación de convolución por sí misma necesita pocos recursos
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computacionales, el procedimiento de optimización convexa necesita afinar diferentes

hiperparámetros, lo que conlleva un tiempo computacional elevado. En cuanto al

algoritmo SparsEDA, que es uno de los últimos métodos de descomposición EDA

publicados recientemente en 2017, se basa en los trabajos de deconvolución anteri-

ores, pero introdujo características diferentes, como la aplicación de la versión no

negativa de la contracción mínima absoluta y el operador de selección mediante el

uso del algoritmo de regresión de ángulo mínimo que hacen que la deconvolución sea

más rápida, eficiente e interpretable que sus predecesores. A pesar de estas ventajas,

su aplicabilidad y rendimiento para segmentos pequeños (inferiores a 70 segundos)

sigue siendo objeto de debate. Así, aunque estos dos algoritmos aportan diferentes

ventajas relacionadas principalmente con la interpretación fisiológica de la EDA,

su aplicabilidad en dispositivos wearables con restricciones multimodales, como el

brazalete de Bindi, es una tarea difícil debido a los altos recursos computacionales

derivados de operaciones específicas, como la optimización convexa. Por lo tanto,

se necesitan alternativas que se sitúen entre los métodos trough-to-peak y los con-

vexos. Por ejemplo, algunos autores [130,131] han utilizado un método Regularized

Least-Squares Detrending (RLSD) [132] en el que el componente tónico se aproxima

a un componente de tendencia aperiódica de baja frecuencia mediante

𝐸𝐷𝐴𝑡𝑜𝑛𝑖𝑐 = 𝐸𝐷𝐴𝑡𝑜𝑡𝑎𝑙

(𝐼 + 𝜆𝐷𝑇
2 𝐷2)

, (2.9)

donde 𝜆𝐷𝑇
2 𝐷2 es el término de regularización que sesga el SCL a una tendencia

suave, 𝐼 es la matriz de identidad, y 𝐷2 es una aproximación discreta del operador

de la 2ª derivada. Obsérvese que cuanto mayor sea la 𝜆, más suave será la com-

ponente SCL. Una vez obtenida esta componente tónica aproximada, se aplica la

misma sustracción a la señal EDA original para obtener la componente fásica. Para

este trabajo de investigación se han utilizado todos los métodos revisados, aunque

sólo se han incrustado los métodos trough-to-peak y RLSD. Más detalles sobre los

resultados obtenidos se encuentran en el capítulo 5 y en el capítulo 6.

Como para cualquier señal fisiológica, durante su adquisición pueden observarse

artefactos de ruido debidos al movimiento, a transitorios rápidos e incluso a elec-

trodos sueltos. La figura 2-15 representa un ejemplo real de las diferentes fuentes

de ruido que pueden encontrarse en las mediciones. Esta imagen muestra la difer-
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encia entre los electrodos secos y los húmedos, ya que estos últimos se ven más

afectados por el ruido debido a la inexistencia de Ag/AgCl que hace que la interfaz

piel-electrodo sea menos robusta y sea efectiva sólo a través del sudor. Hay que

tener en cuenta que este problema es especialmente relevante para el Bindi, ya que

se basa en electrodos secos. Para combatir este tipo de fuentes de ruido y mitigar

sus posibles efectos negativos durante el procesamiento de la EDA, se han aplicado

diferentes pasos de preprocesamiento, como los filtros de media móvil y de mediana.

En los capítulos 4.
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Figure 2-15: Diferencia entre los electrodos secos y húmedos que miden en la parte
ventral sobre la parte derecha (húmeda) e izquierda (seca) de la muñeca. Obsérvese
que las unidades están normalizadas 𝜇 S y que los electrodos húmedos contienen
0,5% de sal de cloruro.

En cuanto a la relación que tiene la EDA con la emoción de miedo, diferentes grupos

de investigación estudiaron este aspecto [85, 133]. Como se ha explicado anterior-

mente, los cambios observados en la señal EDA se pueden relacionar directamente

con la intensidad de la emoción, pero no con el tipo de la misma. De hecho, los

estudios que consideran únicamente esta señal se dirigen a la detección del estrés, a
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la cuantificación del arousal o incluso a la evaluación de la función simpática, pero

no a la identificación de la emoción. En resumen, la emoción de miedo no puede

detectarse utilizando únicamente la información de la EDA. En cualquier caso, la

información extraída de esta señal puede proporcionar una excelente visión sobre los

cambios de la activación simpática. Por ejemplo, ante situaciones muy estresantes,

el SNS segrega diferentes hormonas catecolamínicas (adrenalina y noradrenalina)

que hacen que la señal EDA se caracterice por un aumento del SCL y un incremento

de las diferentes métricas que se extraen del SCR excepto la latencia que tiende a

disminuir. Obsérvese que en estas situaciones aumenta la transpiración, que está

directamente relacionada con la homeostasis y no con el proceso emocional. La in-

terpretación de esta información en cuanto a su implicación emocional en el caso de

las víctimas de violencia de género es más compleja debido a la posible sobrecarga

alostática, que se refiere a los efectos acumulativos de las situaciones estresantes

de la vida diaria que experimentan los individuos y que pueden llegar a inhibir la

desconexión de la activación simpática [134]. Aunque el tratamiento de este último

hecho específico está fuera del alcance de este trabajo de investigación, los detalles

y la base se dan en los capítulos 5 and 6.

2.5.3 Temperatura de la piel
La temperatura de la piel del cuerpo no es tan popular en comparación con las dos

señales fisiológicas ya detalladas. Sin embargo, existen varios investigadores que se

ocupan de la identificación emocional utilizando también esta información [26, 135,

136]. Los fundamentos fisiológicos de esta señal están fuertemente interrelacionados

con el flujo sanguíneo y las respuestas electrodérmicas del cuerpo. De hecho, la

temperatura de la piel está fuertemente relacionada con los cambios de vasomoción

por medio de las fibras simpáticas noradrenérgicas que regulan dicho proceso. Como

se ha dicho anteriormente, el ANS no sólo proporciona mecanismos para hacer frente

a los estímulos externos amenazantes, sino que también es el principal responsable de

los diferentes procesos de homeostasis. Concretamente, en el caso de la temperatura

corporal, el hipotálamo es el principal controlador termorregulador [137]. En todo

el cuerpo tenemos diferentes receptores de temperatura que permiten al hipotálamo

percibir y analizar continuamente la temperatura corporal. Una vez que esta parte

de nuestro cerebro recoge la información necesaria, las acciones posteriores varían en
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función de esa retroalimentación negativa, como para cualquier sistema de control

fisiológico. Así, como en el caso de un termostato doméstico, a partir de un valor

normal preestablecido, se activarán las diferentes defensas termorreguladoras para

preservar, en el caso de nuestro cuerpo, 37 . Por ejemplo, debido a esas defensas,

la temperatura corporal no se desvía más que unas décimas de grado del valor

preestablecido. Es más, existe incluso un rango denominado interumbral, por encima

del cual no se activa ninguna acción termorreguladora, que se sabe que está en torno

a los 0,2°C. En realidad, esas defensas termorreguladoras son las siguientes:

• La sudoración y la vasodilatación son las defensas que se desencadenan cuando

se produce una situación de calentamiento.

• Por el contrario, la vasoconstricción se desencadena para disminuir la pérdida

de calor, principalmente por la disminución de la radiación superficial de la

piel.

Por lo tanto, el proceso de termorregulación autonómica opera de forma sincronizada

con otros sistemas fisiológicos de control de retroalimentación negativa, como el flujo

sanguíneo y el manejo autónomo electrodérmico. Además, hay que destacar que

existe una fuente interna de variabilidad de la temperatura marcada por cambios

físicos, mentales y de comportamiento que siguen un ciclo diario conocido como

ritmo circadiano. La comprensión y el entendimiento de estos factores fisiológicos

son esenciales para evaluar y valorar adecuadamente la información que se desea

recoger.

Desde la perspectiva del procesamiento de señales, esta señal no presenta la misma

complejidad que las anteriores. Por el contrario, su información está contenida

en frecuencias muy bajas, por debajo de 0,5Hz. Por lo tanto, el uso de un filtro

FIR ordinario es suficiente para obtener una señal limpia. Después, la literatura

tiende a extraer de ella características estándar, como la media, la mediana, la

desviación estándar y otros estadísticos de alto orden. Además, su información de

frecuencia extraída se divide comúnmente en diferentes bandas como cualquier otra

señal fisiológica [12, 138]. Sin embargo, así como el procesamiento es uno de los

más fáciles entre las señales fisiológicas, su integración no lo es. Para implementar

un sensor de temperatura dentro de un dispositivo wearable restringido es necesario

tener en cuenta algunas consideraciones. Por ejemplo, los autores de [139] elaboraron
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una encuesta teniendo en cuenta 172 estudios desde 1960 hasta 2016, en la que

revisaron todos los factores que afectan a la medición de la temperatura cuando se

trata de termometría de contacto. Concluyeron con una serie de recomendaciones y

compensaciones entre todos estos factores (interfaz piel-sensor, fijación, protección

y sesgo ambiental, presión del sensor en la piel, etc.) que pueden afectar en gran

medida a la temperatura corporal de la piel que se va a medir. Estos requisitos

técnicos hacen que la integración de los sensores de temperatura de la piel sea

una tarea difícil. De hecho, ningún dispositivo portátil disponible en el mercado

(tipo smartwatch) integra un sensor de temperatura de la piel del cuerpo. Existen

dispositivos wearables de grado de investigación que integran sensores infrarrojos de

termopila, como el E4 de Empatica®2 [140]. Sin embargo, actualmente estos últimos

tienen un coste elevado, lo que hace que su integración no sea tan sencilla como la

termometría de contacto.

En cuanto a la relación entre la emoción del miedo y las variaciones de la temper-

atura corporal, diferentes estudios en la literatura se ocuparon de ello. Las primeras

investigaciones sobre este tema se encuentran en [141–143], en las que, aunque los ex-

perimentos se realizaron con diferentes procedimientos experimentales, coincidieron

en que la temperatura corporal disminuye bajo la elicitación del miedo. Nótese que

en los tres estudios, los sensores de temperatura se colocaron en la palma de la mano.

Recientemente, las investigaciones que se centran en las variaciones de la temper-

atura corporal con respecto a las emociones se centran más en el mapeo térmico

facial utilizando imágenes térmicas infrarrojas funcionales. Por ejemplo, los autores

de [135] utilizaron 60 imágenes de [58] y pidieron a veinticuatro estudiantes (19 mu-

jeres) que calificaran las imágenes basándose en las escalas SAM mientras medían

la temperatura de la piel facial y la EDA. Observaron que el mayor descenso de la

temperatura se producía en las imágenes con mayor excitación. Así, afirmaron que

la regulación autónoma del arousal se realiza en realidad mediante dos respuestas

cutáneas simpáticas, la térmica y la electrodérmica. Sin embargo, una de las prin-

cipales desventajas de la temperatura corporal de la piel en comparación con otras

informaciones fisiológicas es la gran latencia de la señal. Esto supone una limitación

a la hora de utilizar únicamente esta información para inferir el estado emocional.

2https://www.empatica.com/en-eu/research/e4/

51 Jose A. Miranda, Tesis Doctoral



Capítulo 2. Emociones y fisiología

Por ello, su integración solía ir acompañada, es decir, compensada, de otras señales

fisiológicas, como EDA y BVP [133].

A pesar de estos patrones y características termo-emocionales observados, hasta

donde yo sé, no existe ninguna investigación que trate sobre las variaciones de la

temperatura de la piel del cuerpo en la muñeca ni sobre su comportamiento ante

situaciones de violencia de género relacionadas con el miedo. Estos hechos son

esenciales para este trabajo de investigación teniendo en cuenta la propuesta de

pulsera dentro del sistema Bindi, ya que el sensor de temperatura está directamente

unido a la muñeca debido al propio factor de forma. En los capítulos siguientes se

ofrecen más detalles sobre los resultados obtenidos 5 y 6.

2.6 Conclusión
En este Capítulo, hemos proporcionado los fundamentos necesarios para plantear

un sistema de reconocimiento de emociones. Hay que tener en cuenta que los as-

pectos técnicos relacionados con el diseño específico para el entrenamiento de dicho

sistema se proporcionan en el siguiente Capítulo.

Así, se han revisado y detallado las diferentes teorías emocionales y técnicas de

clasificación de emociones humanas. Específicamente y orientado al caso de uso

particular de esta investigación, se propone un nuevo enfoque pragmático para fu-

sionar las clasificaciones discretas y dimensionales de las emociones humanas hacia

la identificación de la emoción miedo. Además, se ofrece un análisis exhaustivo de

los factores intrapersonales que afectan a la modulación de la emoción, como los

rasgos personales, la atención y el sesgo de género, para establecer futuras posibil-

idades de investigación que se desarrollarán como una extensión de este trabajo de

investigación. Además, se presentan y comparan las diferentes herramientas de elic-

itación de emociones utilizadas dentro de la comunidad de la computación afectiva,

destacando la reciente inclusión de VR, que está superando los experimentos de

elicitación de emociones. Por otro lado, se han revisado y analizado las señales fisi-

ológicas de interés para este trabajo de investigación, detallando su comportamiento

y características y estudiando su relación con la emoción miedo. Nótese que la

comprensión de dicha información fisiológica es esencial para cuantificar y distinguir

adecuadamente los diferentes patrones fisiológicos que son producto de una reacción
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emocional.

Sobre esta base, podemos concluir que, aunque las emociones sentidas están ses-

gadas por diferentes factores intrapersonales, la información fisiológica puede ser

utilizada como una cuantificación o medición indirecta de dichos estados afectivos,

ya que estas señales son controladas por el ANS, junto con sus evaluaciones sub-

jetivas autoinformadas. En este contexto, la conjunción de diferentes señales fisi-

ológicas, más que el uso de una sola de ellas, puede ser utilizada para dar lugar

a un sistema informático afectivo inteligente capaz de distinguir diferentes estados

afectivos. En la búsqueda de un sistema de reconocimiento de emociones de este

tipo, que puede ser ampliado para su uso cotidiano, se destacan dos factores prin-

cipales que se consideran esenciales para el desarrollo de Bindi en este caso. En

primer lugar, la necesidad de tener en cuenta las dos clasificaciones de las emociones

humanas, la discreta y la dimensional, puede ser una ventaja para explicar las difer-

entes características de las emociones. En segundo lugar, el análisis de múltiples

fuentes fisiológicas de información en tiempo real es una tarea compleja ya que,

desde la perspectiva de los wearables, están sometidas a diferentes fuentes de ruido

que afectan directamente a la calidad de las señales y, por tanto, a la inferencia del

reconocimiento de emociones. En los siguientes capítulos se ofrecen más detalles

sobre la aplicación de todos los aspectos detallados relativos a las clasificaciones de

las emociones humanas, las herramientas de elicitación de emociones y el desen-

trañamiento fisiológico y de las emociones.
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Capı́tulo 3
Bases de datos y aprendizaje automático

para el reconocimiento de emociones

En este capítulo, por un lado, ofrecemos un análisis completo sobre la estructura y

los procedimientos experimentales utilizados para la generación de bases de datos

diseñadas para el reconocimiento de emociones. Hay que tener en cuenta que, tal y

como se especifica en el capítulo 2, estas bases de datos son esenciales para recoger

las respuestas emocionales y entrenar los sistemas de reconocimiento de emociones.

Además, también se explica cada parte de la cadena completa de procesamiento de

datos para el sistema de computación afectiva que utiliza dichas bases de datos. Hay

que tener en cuenta que la comprensión del estado actual de la generación de bases

de datos ha sido esencial para diseñar adecuadamente la base de datos presentada

en este trabajo. Además, se realiza una revisión crítica a lo largo de los diferentes

apartados, aportando recomendaciones sobre lo que se debería considerar para la

generación de una base de datos de reconocimiento de emociones y se explica lo

que finalmente se ha aplicado para la generación de la nuestra, que se detalla en su

totalidad en el Capítulo 6.

Antes de entrar en detalles de cada una de las partes implicadas tanto en la gen-

eración de la base de datos como en el diseño del sistema de computación afectiva, se

muestra en la Figura 3-1 una representación general de dichos elementos y acciones.

Como se indica en el capítulo 2, una base de datos para el entrenamiento de un sis-

tema de computación afectiva se compone de los siguientes elementos principales 1)

estímulos, 2) señales físicas y fisiológicas, 3) etiquetas, y 4) voluntarios. El segundo
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y el tercer elemento se utilizarán para entrenar y validar el sistema de computación

afectiva, mientras que el primero es necesario para provocar reacciones emocionales

en los voluntarios. En este contexto, el proceso de construcción de una base de datos

implica las siguientes tareas en relación con estos elementos:

a) Antes de la generación de la base de datos:

• Se recolecta un pool de estímulos.

• En caso de enfrentarse a un experimento de tiempo limitado, se aplican

diferentes métodos para reducir el número de estímulos del pool anterior.

• El conjunto final de estímulos se organiza para ser utilizado durante la

generación de la base de datos.

• Los diferentes sensores se seleccionan validados para recoger toda la in-

formación durante la elicitación de la emoción.

b) Durante la generación de la base de datos:

• Se recogen y almacenan las diferentes variables a medir durante la recep-

ción de los estímulos.

• Se recogen y almacenan los datos autodeclarados (etiquetas de emoción)

para identificar la información fisiológica y física con respecto a los estí-

mulos específicos.

c) Después de la generación de la base de datos:

• El filtrado y acondicionamiento digital se utiliza para limpiar las difer-

entes señales.

• Se realiza un análisis exploratorio de los datos para identificar anomalías

e incluso problemas físicos o fisiológicos.

• Extracción de diferentes métricas sintéticas y/o características de los

datos. A partir de ellos, se aplica la reducción, selección y optimización.

• En caso de estar bajo un caso de uso multimodal, se pueden abordar

diferentes alternativas hacia la fusión de datos.

• Aplicación de un proceso iterativo entre la propia arquitectura de fusión

de datos, el algoritmo de clasificación y los procesos de ajuste fino de los

hiperparámetros.

• Liberación del modelo con el mejor rendimiento.

Este capítulo está estructurado de la siguiente manera. En la primera sección, se
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Figure 3-1: Elementos, procesos y acciones comunes necesarios para la generación
de una base de datos de reconocimiento de emociones (Volunteers - Voluntarios,
Sensors - Sensores, DB Experiment - Experimento de la BBDD, Raw Data - Datos
crudos, Self-Reported Annotations - Anotaciones reportadas, Stimuli Pool - Con-
junto de Estímulos, Stimuli Reduction/Selection - Selección/Reducción de estímulos,
Physiological Data Processing - Procesamiento de los datos fisiológicos, Exploratory
Data Analysis - Análisis exploratorio de los datos, Feature Engineering - Ingeniería
de los datos, Classification - Clasificación, Performance assessment - Evaluación
del desempeño, Data Fusion - Fusion de Datos, Hyperparameter Optimisation -
Optimización de hyperparámetros, Fully trained operational model - modelo comple-
tamente entrenado).

explican y revisan uno a uno los elementos, procesos y acciones comunes necesar-

ios para la generación de una base de datos de reconocimiento de emociones. La

siguiente sección proporciona un resumen detallado de las diferentes bases de datos

multimodales de reconocimiento de emociones que están disponibles en la literatura.

Esta Sección también detalla cómo dichas bases de datos han abordado los diferentes

puntos explicados en la Sección anterior, así como sus limitaciones y aplicabilidad

a nuestro caso de uso. En la tercera sección, se destacan las diferencias entre las

configuraciones de laboratorio y de campo para la generación de la base de datos.

Hay que tener en cuenta que, para este trabajo de investigación, la única base de

datos presentada en este documento se basa en configuraciones de laboratorio. Sin

embargo, las conclusiones de esta última sección pueden utilizarse para la generación

de bases de datos sobre el terreno en un futuro próximo.
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3.1 Metodología general de las bases de datos
Los elementos y procesos que intervienen en la generación de una base de datos

de reconocimiento de emociones se esquematizan en la Figura 3-1. En las siguientes

subsecciones se explican sus particularidades, ventajas e inconvenientes. Hay que

tener en cuenta que el resultado final es un modelo operacional completamente

entrenado, basado en procesos no en línea (offline) que se realizan después de la

generación de la base de datos. Por lo tanto, en este capítulo no se aborda ninguna

optimización digital integrada para cada proceso. La integración y la optimización

integradas para los dispositivos portátiles en tiempo real se detallan en el capítulo

5.

3.1.1 Selección y análisis de estímulos
La generación de un conjunto de estímulos adecuados es la primera etapa para

cualquier base de datos centrada en el reconocimiento de emociones. Este paso

es esencial, ya que cuanto mejor estén preetiquetados los estímulos, mejor será la

verdad de la investigación del experimento. Esta última puede ser incluso una her-

ramienta útil para ser comparada y analizada con las anotaciones de cada voluntario

dentro de la base de datos, como se detalla en la sección 2.4. Así, la situación ideal

es que la metodología de etiquetado fuera la misma durante la selección de los estí-

mulos y durante el experimento de la base de datos. Obsérvese que en este tipo de

experimentos, en realidad tenemos dos tipos de etiquetas (verdad absoluta o ground

truth), las que provienen de la selección de estímulos y las que provienen de las

valoraciones autoinformadas de los voluntarios.

En la literatura ya existe una amplia gama de opciones de bases de datos de

estímulos. Por ejemplo, en 1997 el Instituto Nacional de Salud Mental lanzó el

sistema internacional de imágenes afectivas como una base de datos que contenía

cientos de imágenes etiquetadas [58]. Este sistema ha crecido desde entonces, hasta

llegar a más de 1000 imágenes etiquetadas, e incluso se ha adaptado a otras culturas,

como el español [144]. Las etiquetas contenidas en esta base de datos se caracterizan

por la media y la desviación estándar de las tres dimensiones del espacio PAD.

Aparte de los grupos de estímulos de imagen disponibles públicamente, también

se encuentran bases de datos basadas en vídeo [12, 138, 145]. Independientemente
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del tipo de estímulo, el análisis y la selección de estímulos son esenciales, ya que

algunas de estas bases de datos no son prácticas para ser aplicadas en su totalidad

(todos los estímulos) dentro de un experimento. Por lo tanto, se pueden observar

diferentes enfoques en la literatura para filtrar y seleccionar conjuntos más pequeños

de estímulos. Algunos de ellos [138] utilizaron la llamada puntuación de realce

emocional basada en el espacio PA y dada por

| 𝑒 |=
√

𝑎2 + 𝑣2, (3.1)

donde 𝑎 y 𝑣 son los valores de excitación y valencia obtenidos de las etiquetas recogi-

das respectivamente. Así, los estímulos con | 𝑒 |más altos serán los que proporcionen

una mayor intensidad emocional en términos de las dimensiones 𝑎 y 𝑣. Obsérvese

que esta ecuación puede ampliarse para que sea válida y aplicable a otras dimen-

siones. Las puntuaciones obtenidas para todos los estímulos pueden clasificarse para

seleccionar un grupo más pequeño con los valores más altos. Otros, como [12], re-

alizaron un experimento de preetiquetado en el que partían de un gran conjunto

de estímulos y pedían a la gente que etiquetara esos estímulos mediante un sistema

de anotación afectiva en línea. Aseguraron un número mínimo de etiquetas por

vídeo, y finalmente seleccionaron las que obtuvieron el mayor grado de acuerdo. La

evolución de este último método incluye estadísticas de orden superior aplicadas a

los experimentos preetiquetados para evaluar el acuerdo entre diferentes anotadores.

Por ejemplo, los autores de [145] calcularon las distancias de Jaccard para cada par

de anotadores y calcularon la desviación media absoluta de la distribución de distan-

cias acumuladas para, finalmente, considerar como valores atípicos aquellos que se

desviaban más de un umbral específico. No obstante, uno de los pasos seguidos junto

con la selección de estímulos es la evaluación del equilibrio de los estímulos. Este

proceso asegura que los estímulos seleccionados se distribuyen de forma equitativa

a lo largo de todas las diferentes emociones que hay que detectar o clasificar. Por

ejemplo, un enfoque común es tratar con el modelo PA, sólo en aras de la simplici-

dad en comparación con el modelo PAD, y normalizar las calificaciones utilizando la

media y la desviación estándar (𝜇/𝜎), para luego trazar la excitación normalizada

frente a la valencia normalizada y proceder a evaluar el estado de equilibrio de los

estímulos.
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En realidad, este paso está muy condicionado por el objetivo de la experimentación.

La mayoría de las bases de datos de estímulos disponibles para el reconocimiento

de emociones están pensadas y diseñadas desde una perspectiva emocional general,

es decir, con el objetivo de identificar emociones en general sin dirigirse a modelos

emocionales binarios especializados. Incluso los procedimientos preetiquetados sue-

len ser realizados por el público en general, sin tener en cuenta ninguna evaluación

de expertos. Este enfoque es totalmente comprensible desde una perspectiva de

uso general y masivo, sin embargo, para trabajos de investigación como el que se

aborda en este documento puede no ser adecuado. Teniendo en cuenta que el obje-

tivo principal de este trabajo de investigación se basa en la generación de sistemas

de computación afectiva para la detección del miedo en situaciones de violencia de

género, la selección de los estímulos debe hacerse con especial cuidado y tales bases

de datos pueden no ser adecuadas para cumplir con los requisitos en términos de

elicitación de emociones específicas. En el capítulo 6 se ofrecen detalles más especí-

ficos sobre cómo hemos abordado la selección y el análisis de los estímulos para la

generación de nuestra base de datos.

3.1.2 Procesamiento y adquisición de los sensores
Durante el experimento de cualquier base de datos, diferentes sensores están adquiriendo

señales fisiológicas y/o físicas del voluntario mientras se le aplican estímulos. Estos

sistemas sensoriales deben diseñarse adecuadamente teniendo en cuenta los sigu-

ientes aspectos:

• Como la generación de una base de datos no es más que una enorme recolección

de datos para luego crear sistemas inteligentes a partir de ella, se recomienda

tener frecuencias de muestreo relativamente altas. Esto permite experimentar

con cualquier frecuencia de muestreo más baja en la etapa de entrenamiento

para observar cómo eso limita y afecta a los diferentes modelos de clasificación.

• Independientemente de la frecuencia de muestreo, hay que garantizar la sin-

cronización entre los diferentes sensores durante el experimento. Sin embargo,

para aliviar este proceso, otra opción es almacenar las marcas de tiempo glob-

ales de cada uno de los datos de los sensores recibidos para asegurar aún más

que corresponden a la misma franja horaria del experimento.

• Se recomienda el uso de un conjunto de herramientas de detección homologado
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o estándar, que se utilizará como sistema de medición dorado. Esto permitirá

la comparación posterior con otras bases de datos, así como la detección de

fallos en el sistema de sensores propuesto.

• Los sensores deben estar ubicados preferentemente en la mejor posición de

medición, lo más cerca posible de la ubicación final del cuerpo y, en caso

de que se prevea una posterior integración vestible del sistema informático

afectivo resultante, donde se haya previsto.

Estos factores son recomendaciones basadas en el estado del arte [26] y en los

conocimientos recogidos a lo largo del desarrollo de este trabajo de investigación.

En cuanto al procesamiento de los datos, la primera tarea es aplicar un filtrado

básico mediante el uso de filtros digitales de paso de banda baja y alta. Para las

señales que poseen una alta sensibilidad al ruido, como PPG, se pueden aplicar

procedimientos Signal Quality Assessment (SQA) específicos y algoritmos MAR

[146, 147]. Lo mismo se aplica a las señales que necesitan algoritmos especiales

de separación de componentes, como EDA, como se explica en la sección 2-14. En

el capítulo 2-14 se ofrecen más detalles sobre las diferentes técnicas y algoritmos

diseñados y aplicados en este trabajo. Nótese que hoy en día ya existen en la liter-

atura herramientas de libre acceso diseñadas para el procesamiento fisiológico. Por

ejemplo, Soleymani et. al. en [148] diseñó una caja de herramientas abierta para

el procesamiento de un conjunto completo de señales fisiológicas y la extracción de

características relacionadas con las emociones. Además, se han encontrado difer-

entes cajas de herramientas de procesamiento de señales fisiológicas, especializadas

en una sola señal fisiológica, [149, 150]. Sin embargo, estas cajas de herramientas

están pensadas y orientadas a un proceso de diseño de sistemas basado en PC o

fuera de línea, dejando de lado las limitaciones de los wearables integrados.

Junto con el procesamiento de datos, también se aplica la segmentación de datos

sobre las diferentes señales. De hecho, la mayoría de los sistemas de reconocimiento

de emociones en la literatura utilizan ventanas de procesamiento segmentadas para

tratar y analizar los datos fisiológicos adquiridos. A la hora de abordar la seg-

mentación de los datos, hay que tener en cuenta aspectos relacionados con las ven-

tanas, como su resolución temporal y de frecuencia y la latencia emocional. Por un

lado, la resolución temporal tiene una relación directa con la resolución de frecuencia.

61 Jose A. Miranda, Tesis Doctoral



Capítulo 3. Bases de datos y aprendizaje automático para el reconocimiento de
emociones

Esto se debe a que es necesario garantizar una resolución de frecuencia específica

para extraer información emocional útil para algunos rasgos fisiológicos [8]. Por

otro lado, la latencia emocional está relacionada con el hecho de que una persona

no experimenta la misma respuesta fisiológica (emoción) durante toda la recep-

ción de un estímulo [151,152]. Este último aspecto puede afectar definitivamente al

rendimiento del sistema, ya que está relacionado con el posible etiquetado incorrecto

de las muestras.

3.1.3 Análisis exploratorio de los datos
Una vez que las señales han pasado por todo el procesamiento de datos necesario,

se recomienda realizar un análisis exploratorio de los datos. Este proceso puede re-

alizarse utilizando los datos filtrados y/o las características extraídas. Este proceso

puede proporcionar una visión excelente de lo que realmente, a primera vista, está

ocurriendo durante el experimento. Además, también puede dar una idea de los ca-

sos en los que el sensor está funcionando mal y las etapas de filtrado o procesamiento

no pudieron solucionarlo. Este tipo de análisis exploratorio de datos nos permite

determinar algunos de los comportamientos fisiológicos durante las diferentes etapas

de los experimentos y llevar a cabo acciones específicas para tratar algunos proble-

mas, como que la recuperación fisiológica no funcione como se esperaba o alargar los

estímulos ya que la latencia emocional estaba afectando a algunas de las respuestas

fisiológicas. En el capítulo 6.

Las diferentes bases de datos de reconocimiento de emociones disponibles públi-

camente no informan de este análisis exploratorio de datos, los trabajos publicados

se centran en la generación de la base de datos (el proceso de recogida de datos).

El análisis exploratorio de datos es una tarea que requiere mucho tiempo, pero el

efecto fisiológico del experimento es muy útil desde el punto de vista de la detección

de emociones. Por ello, otras investigaciones han realizado este análisis tras la pub-

licación de las diferentes bases de datos. Por ejemplo, los autores de [153] utilizaron

una de las bases de datos públicas abiertas en la literatura [138], siete años después

de su lanzamiento, y concluyeron que las emociones inducidas eran más fuertes en

la parte final de los estímulos, basándose en un análisis exploratorio de datos sobre

los datos fisiológicos filtrados. Esa conclusión les llevó a entrenar su sistema prop-

uesto utilizando sólo los últimos 20 segundos de cada estímulo. Así, estas y otras
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consideraciones técnicas resultaron en un aumento significativo de la precisión de

la tasa de reconocimiento de emociones en comparación con las técnicas de clasifi-

cación de emociones existentes en el estado del arte. Sin embargo, a pesar de las

ventajas que este proceso puede aportar en relación con la eficacia de los sistemas de

computación afectiva generados, implica una cantidad considerable de tiempo, así

como la necesidad de un buen conocimiento de las señales fisiológicas. Esta última

consideración es, en realidad, el factor más desafiante, ya que los diferentes patrones

fisiológicos pueden variar en gran medida entre sujetos y sesiones experimentales.

De hecho, las recientes revisiones de reconocimiento de emociones en la literatura ni

siquiera abordan nada relacionado con este tema [26,49,133,154,155].

3.1.4 Ingeniería de características
La ingeniería de características implica la utilización de diferentes mecanismos para

mejorar el rendimiento del modelo de reconocimiento de emociones. Obsérvese que

sólo se aplica a las estrategias de aprendizaje automático convencionales y a las

estrategias de aprendizaje profundo en las que las entradas son las características

extraídas. Por lo tanto, hay que hacer una distinción esencial antes de entrar en de-

talles sobre la ingeniería de características. Por un lado, el aprendizaje automático

convencional y el aprendizaje profundo que utiliza la extracción de características re-

quieren técnicas de extracción ad hoc, así como la optimización, Figura 3-2. Por otro

lado, existen métodos de aprendizaje profundo que no necesitan una etapa de ex-

tracción de características, ya que pueden aprender patrones y principios inherentes

directamente de los datos procesados para extraer características ya optimizadas

automáticamente. Estos últimos métodos se conocen como soluciones end-to-end,

y parecen ser muy prometedores para el reconocimiento de emociones en problemas

fisiológicos y multimodales [156–158]. Sin embargo, las metodologías de aprendizaje

profundo, ya sea que dependan de características elaboradas a mano o aprendidas,

siguen requiriendo una cantidad considerable de recursos. Por ejemplo, TensorFlow

Lite, que es hoy en día uno de los marcos de aprendizaje automático de código

abierto más utilizados para dispositivos de baja potencia y muy restringidos, puede

desplegar modelos de aprendizaje profundo con un tamaño de 300 KB a 1 MB1.

Desafortunadamente, cuando se considera el diseño de dispositivos wearables de ul-
1https://www.tensorflow.org/lite/guide (consultado: 01/03/2022)
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tra bajo consumo utilizando la tecnología actual de System on Chip (SoC), estos

tamaños de memoria pueden perjudicar otras tareas críticas que se deben realizar

dentro de dichos dispositivos. Sin embargo, cabe mencionar que se está aplicando

un enorme esfuerzo para potenciar el aprendizaje profundo en los sistemas de com-

putación de borde, como la fundación TinyML 2 o la tecnología optimizada de

potencia subumbral 3 de Ambiq Micro Inc. Así, para este trabajo de investigación,

nos centramos en la arquitectura de aprendizaje automático convencional, dejando

el aprendizaje profundo embebido y/o los sistemas profundos de extremo a extremo

para futuras investigaciones. En las siguientes subsecciones se discuten los diferentes

procesos que se pueden realizar para la estrategia de ingeniería de características.

Nótese que estos se llevan a cabo una sola vez durante el entrenamiento del sistema,

posterior a la generación de la base de datos, pero antes del despliegue del sistema.

Data
Feature 

Extraction

Dimensionality 

Reduction

Feature 

Selection

Learning 

Algorithm
Performance

Filter techniques
Wrapper techniques

Embedded techniques

Figure 3-2: Procesos convencionales de ingeniería de rasgos para la selección super-
visada de rasgos.

3.1.4.1 Extracción de características

La primera tarea dentro del proceso de ingeniería de características es la extracción

de métricas sintéticas a partir de los datos filtrados previamente. Independiente-

mente de la gran cantidad de técnicas de extracción de características que se pueden

encontrar en la literatura para el reconocimiento de emociones [26, 49, 154], pueden

ser divididas en tres categorías:

• Dominio temporal. Estas características poseen la menor complejidad com-

putacional entre los diferentes tipos de técnicas de extracción de caracterís-

ticas. Obsérvese que la mayoría de las características del dominio temporal

pueden implementarse de forma lineal (𝒪(𝑛)). En concreto, proporcionan

2https://www.tinyml.org/ (Consultado: 01/03/2022)
3https://ambiq.com/ (Consultado: 01/03/2022)
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información sobre los aspectos estacionarios y lineales de la serie temporal

analizada. La mayoría de ellos se extraen mediante cálculos estadísticos de

orden superior. Una de las mayores desventajas de estas características es la

incapacidad de captar el comportamiento fisiológico no estacionario.

• Dominio de la frecuencia. El objetivo de estas características es obtener la

PSD en bandas de frecuencia específicas para las diferentes señales fisiológi-

cas. El método habitual para obtener la PSD se basa en la Discrete Fourier

Transform (DFT) utilizando el algoritmo Fast Fourier Transform (FFT). En

este caso concreto, la complejidad temporal suele ser de hasta 𝒪(𝑛 log 𝑛) en

comparación con las características temporales. Además, tratar el dominio de

la frecuencia es sinónimo del problema de la resolución de la frecuencia tem-

poral. Este último hecho es de especial relevancia en el caso de la información

fisiológica, ya que algunas de ellas son señales que cambian lentamente, como

la EDA, que se sabe que tiene respuestas que varían en el tiempo de 1 a 30 s en

función del tipo de estímulo [119]. Además de este problema, existe informa-

ción fisiológica que es una señal muestreada de forma desigual o no uniforme, lo

que hace imposible la aplicación del algoritmo FFT. Este problema se aborda

en la literatura empleando diferentes técnicas como la interpolación previa o

el periodograma de Lomb-Scargle [159]. Por lo tanto, aunque el contenido fre-

cuencial ha demostrado ser una medida fiable para rastrear las emociones, hay

que tener en cuenta diferentes compensaciones en cuanto a la optimización de

estas técnicas, así como las necesidades de resolución de la frecuencia (tamaño

de almacenamiento de la ventana temporal y capacidad de procesamiento).

• Métodos no lineales. Para desentrañar las propiedades dinámicas y no esta-

cionarias de las señales fisiológicas, se utilizan diferentes métodos. Hay que

tener en cuenta que este tipo de características también se denominan car-

acterísticas caóticas. De hecho, los trabajos que han contemplado, utilizado

e incluso comparado las características no lineales frente a las temporales o

frecuenciales han obtenido una mejora considerable del rendimiento en su ob-

jetivo específico de reconocimiento de emociones [160, 161]. Además, en los

últimos años, la aplicabilidad del aprendizaje profundo a los problemas de re-

conocimiento de emociones ha aumentado debido a los prometedores resultados
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obtenidos [153,162,163], lo que es un indicativo del componente emocional no

lineal fisiológico también. Dentro de este contexto y en consonancia con la im-

portancia no lineal, diferentes estudios y revisiones recogieron y analizaron el

comportamiento fisiológico no lineal [91, 92], como se señala en la sección 2.5.

La principal y mayor desventaja de estas técnicas es la complejidad temporal

que tienen, ya que puede ser de hasta 𝒪(𝑛2).

La mayoría de los sistemas de reconocimiento de emociones basados en señales fisi-

ológicas y que utilizan etiquetas emocionales bien conocidas se basan en la extracción

convencional de características temporales y de frecuencia. Por lo tanto, la combi-

nación de los tres dominios (temporal, de frecuencia y no lineal) debería ampliarse

en la literatura. Este enfoque podría aprovecharse para comprender mejor las varia-

ciones fisiológicas y los cambios relativos a las métricas autodeclaradas que se uti-

lizan como etiquetas en este tipo de sistemas. Hay que señalar que, la categorización

proporcionada por este trabajo de investigación se basa en las diferentes revisiones

comentadas en la literatura. Sin embargo, puede haber técnicas de extracción de

características más específicas o incluso nombres diferentes para las categorías prop-

uestas. Por ejemplo, las características morfológicas [164], siendo aquellas que se re-

fieren a propiedades específicas de la señal fisiológica (amplitudes, tiempos, número

de picos, etc.), solían emplearse también indistintamente a las técnicas de dominio

temporal. En el caso de este trabajo de investigación, hemos elaborado un compen-

dio de las características más relevantes y exitosas considerando las tres categorías

revisadas. En el capítulo 4 se ofrecen más detalles sobre su aplicación específica.

Una vez que se han extraído con éxito las características, es el momento de opti-

mizarlas. Esta optimización puede realizarse mediante la selección y/o la reducción

de características [165]. La primera se basa en identificar las características más

relevantes y crear nuevos subconjuntos de características con ellas, mientras que la

segunda se ocupa de la reducción de la dimensionalidad del problema mediante dis-

tintos tipos de transformación de bases. Obsérvese que el proceso de transformación

de bases se refiere a la conversión de las características extraídas de alta dimensión,

es decir, de alto número de características, en un espacio de baja dimensión con

una pérdida mínima de información. Ambos métodos de optimización de carac-

terísticas son esenciales para simplificar el modelo (menos almacenamiento, mejor
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visualización, reducción de datos, la navaja de Occam), para evitar la maldición de

la dimensionalidad y para reducir el tiempo de entrenamiento.

3.1.4.2 Selección de características

Para el procedimiento de selección de características, diferenciamos tres técnicas

comunes, que se esquematizan en la Figura 3-2 y se aplican para el reconocimiento

de emociones según la relación con los métodos de aprendizaje [166]. En primer lu-

gar, podemos encontrar las técnicas más sencillas conocidas como métodos de filtro.

Estos se basan en métricas estadísticas generales, como la correlación con la vari-

able dependiente, mediante las cuales se clasifican las diferentes características para

seleccionar posteriormente el nuevo subconjunto. Aunque poseen la menor com-

plejidad computacional, son más propensos a fallar en la selección de las mejores

características, ya que no se considera ni la interacción entre ellas ni el efecto del

nuevo subconjunto en el rendimiento del clasificador. En segundo lugar, para evitar

los problemas de los métodos de filtrado, encontramos los métodos de envoltura.

Estos utilizan el clasificador para verificar el efecto del rendimiento de los nuevos

subconjuntos generados de forma iterativa. Dos de los métodos envolventes más

conocidos y utilizados son Sequential Forward Selection (SFS) y Sequential Back-

ward Elimination (SBE). En concreto, el primero se inicializa con un subconjunto

vacío de características y comienza a combinarlas hasta que no se observa ninguna

mejora, mientras que el segundo realiza la misma operación al revés, comenzando

con todas las características y eliminándolas una a una. Se sabe que los métodos

de envoltura proporcionan un mejor rendimiento a costa de: (1) altas necesidades

de cálculo cuando el número de características es relativamente alto, y (2) riesgo

de sobreajuste cuando el número de muestras de entrada es relativamente bajo.

Además, están fuertemente condicionados al tipo de clasificador utilizado durante

las diferentes iteraciones de envoltura. Por último, el tercer tipo de estos métodos

se conoce como métodos integrados. Se crearon para hacer frente a los diferentes

inconvenientes de las dos técnicas anteriores y mantener sus ventajas. En este caso,

el mecanismo de selección de características está integrado en el núcleo del algoritmo

de clasificación y aprovecha su selección de características y su clasificación al mismo

tiempo. Esto proporciona una complejidad computacional y una velocidad incluso

comparada con las técnicas de filtro y siendo mucho menos propensa al sobreajuste.
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Nótese que las técnicas comentadas utilizan las etiquetas o la variable objetivo, lo

que se conoce como selección de características supervisada. Sin embargo, también

hay métodos que no necesitan la variable objetivo, como las técnicas basadas en

la correlación. Estas últimas técnicas pueden proporcionar información sobre la

relación entre las diferentes características para descartar aún más la información

redundante.

3.1.4.3 Reducción de dimensionalidad

Como ya se ha comentado, otra posibilidad para optimizar el espacio de carac-

terísticas es aplicar la reducción de características. Este método se basa en una

transformación no supervisada de las características extraídas en un espacio de car-

acterísticas completamente nuevo. Por ejemplo, una de las técnicas más comunes

es Principal Component Analysis (PCA), en la que cada nueva característica se

obtiene mediante una combinación lineal de las características originales. En con-

creto, PCA calcula las matrices de covarianza de las características originales para

luego extraer sus vectores propios y cada valor propio correspondiente. A contin-

uación, los vectores propios se clasifican por los valores propios en orden descendente

(de más a menos información transportada) y sólo se guardan los de interés. Di-

chos eigenvectores almacenados se juntan dando lugar a la matriz de proyección,

que se utilizará para la proyección de los datos originales. Una de las principales

desventajas es que PCA puede producir que las variables independientes sean menos

interpretables, ya que las características originales se convierten en componentes

principales. Este método ha sido ampliamente utilizado para la reducción de car-

acterísticas en el reconocimiento de la emoción y otros problemas de aprendizaje

automático [155, 167, 168]. Nótese que, además de PCA, existe una gran variedad

de métodos en la literatura en cuanto a la reducción de características, como el t-

Distributed stochastic neighbour embedding, el análisis discriminante generalizado,

o el análisis de componentes independientes [169].

Teniendo en cuenta que la búsqueda del subconjunto ideal de características, ya sea

por selección o por reducción, es un problema NP-hard, la única forma de obtener

una solución óptima es realizando una búsqueda exhaustiva dentro del espacio de la

solución o dentro de la aplicación de diferentes técnicas de reducción de caracterís-

ticas. Sin embargo, incluso considerando que este proceso puede realizarse durante
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el entrenamiento del sistema sin implicar ninguna restricción digital incorporada, se

trata de una tarea difícil. Además, la gran variedad de técnicas y la investigación

activa en este campo introducen aún más complejidad al problema. Por lo tanto,

la propuesta, el desarrollo y/o la implementación de nuevas técnicas de reducción

de la dimensionalidad están fuera del alcance de este documento. En su lugar, a lo

largo del desarrollo de este trabajo de investigación, se han aplicado diferentes méto-

dos de selección de características comúnmente utilizados para nuestro caso de uso

específico. En los capítulos 4 y 6 se ofrecen más detalles sobre su implementación.

3.1.5 Optimización de Hyperparámetros
El término hiperparámetro se refiere a los valores que intervienen en el proceso de

aprendizaje de los distintos algoritmos de aprendizaje automático y que no pueden

estimarse a partir de los datos. Cuando se trata de aprendizaje automático con-

vencional, el proceso de ajuste de hiperparámetros puede mejorar mucho el modelo

de clasificación durante el entrenamiento. Sin embargo, en cuanto a la selección de

características, este proceso también es un problema de dificultad NP, ya que los

hiperparámetros perfectos se obtienen después de haber verificado todas las combi-

naciones diferentes y posibles. Para simplificar, imaginemos un problema de aproxi-

mación por mínimos cuadrados (un problema de regresión lineal), en el que el ajuste

del modelo se evalúa mediante el residuo de cada punto dado por

𝑟 = 𝑦 − 𝑓(𝑥), (3.2)

donde 𝑟 es el residuo obtenido para la muestra observada 𝑦 al considerar el modelo

definido por 𝑓(𝑥). Suponiendo que la aproximación del modelo es una línea recta,

la ecuación anterior resulta en

𝑟 = 𝑦 − (𝑏 + 𝑚𝑥), (3.3)

donde 𝑏 es la intercepción con la variable dependiente y 𝑚 es la pendiente del modelo

de línea recta. De hecho, estos son los parámetros del modelo que afectan direc-

tamente al ajuste de los puntos de datos observados. Sin embargo, para encontrar

el ajuste óptimo, hay que evaluar una función de pérdida para todas las combina-
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ciones posibles. Por ejemplo, las técnicas de mínimos cuadrados utilizan funciones

de pérdida cuadráticas para minimizar los residuos. Dado que la ejecución de todas

las combinaciones posibles es una tarea que consume mucho tiempo, en la liter-

atura se utilizan diferentes técnicas para optimizar esta búsqueda y proporcionar

una máquina bien optimizada, es decir, el algoritmo [170]. Uno de los métodos más

sencillos para hacerlo es establecer un número máximo de iteraciones para verificar

dicha función de pérdida en función de un tamaño de paso específico o una tasa

de aprendizaje mientras se avanza hacia el mínimo de dicha función de pérdida.

Estos últimos valores se fijan antes de ejecutar el modelo y son externos a él, iden-

tificándose como hiperparámetros. Aunque hay muchas técnicas de optimización de

hiperparámetros, hemos revisado tres de ellas: la búsqueda

• Búsqueda en cuadrícula. Esta técnica se basa en una cuadrícula predefinida de

combinaciones de hiperparámetros, es decir, un espacio preestablecido de posi-

bles combinaciones, que se ejecutan y prueban secuencialmente. Este método

suele ser muy exhaustivo, pero al mismo tiempo consume mucho tiempo. Por

ejemplo, si tomamos tres hiperparámetros y comprobamos 50 valores para

cada uno, eso da como resultado un total de 125.000 combinaciones a probar.

Por lo tanto, la búsqueda en cuadrícula se puede utilizar para una primera

aproximación al problema, sabiendo que no va a ser ni la mejor ni la más

barata en términos de consumo de recursos y tiempo [171].

• Búsqueda aleatoria. Esta técnica sigue el mismo concepto que la búsqueda en

cuadrícula, es decir, se realiza una búsqueda sobre un espacio preestablecido

de combinaciones posibles. Sin embargo, en lugar de evaluar esas combina-

ciones secuencialmente, la técnica utiliza combinaciones aleatorias dentro de

dicho espacio. La cantidad de iteraciones está limitada explícitamente por el

diseñador. En general, se ha demostrado que este método proporciona mejores

modelos en la mayoría de los casos y requiere menos tiempo de cálculo [172].

• Optimización bayesiana. Uno de los puntos débiles de las dos técnicas anteri-

ores es que la evaluación de nuevos puntos o combinaciones de hiperparámetros

dentro de la malla no considera ninguna información sobre la evolución de la

puntuación a lo largo del proceso de optimización. Así, el ajuste bayesiano de

hiperparámetros se conoce como una técnica Sequential Model-Based Optimi-
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sation (SMBO) que utiliza el conocimiento de las iteraciones anteriores para

concentrarse en las mejores puntuaciones de pérdida de la función, es decir,

se basa en un modelo probabilístico gaussiano continuamente actualizado que

permite elegir la siguiente combinación de hiperparámetros de forma informada

para potenciar la evaluación de valores más prometedores [173].

Sobre el uso específico de estas técnicas para este trabajo de investigación se ofrecen

más detalles sobre el uso de las mismas en los capítulos 4 y 6.

3.1.6 Fusion de datos
El carácter interdisciplinario de los problemas de la informática afectiva, cuyo obje-

tivo es el reconocimiento de las emociones, junto con los avances tecnológicos abren

un sinfín de posibilidades en cuanto a la observación de las modalidades. Obsérvese

que el término modalidad se refiere a la adquisición de datos multisensorial, en la

que cada sensor está destinado a captar datos de fuentes de información totalmente

diferentes (por ejemplo, auditiva, fisiológica, textual, visual). Por ejemplo, nuestro

cerebro ya trabaja sobre la base de información multisensorial y toma decisiones

basadas en la fusión de datos. De hecho, los autores de [174] realizaron una re-

visión detallada y exhaustiva de los experimentos multimodales en la literatura en

comparación con los uni-modales. A través de esa revisión, confirmaron que los

sistemas multimodales superan a los unimodales. Además, también señalan que las

técnicas de aprendizaje profundo están ganando terreno al aprendizaje automático

convencional mediante el uso de modelos de aprendizaje profundo de extremo a ex-

tremo, que no necesitan los pasos de extracción de características, ya que pueden

alimentarse directamente utilizando los datos en bruto [158].

Dentro de este contexto, podemos categorizar a Bindi como un sistema multimodal,

en el que tenemos dos modalidades diferentes: fisiológica y de audio. Estas pueden

fusionarse empleando diferentes metodologías de fusión de datos, que se describen

a continuación:

• Fusión temprana. Este método se basa en realizar o aplicar la tarea de fusión

en la fase inicial del problema, es decir, utilizando los datos o incluso las carac-

terísticas. Lo primero puede hacerse eliminando la información correlacionada

entre modalidades, mientras que lo segundo fusiona las diferentes caracterís-

ticas (de diferentes modalidades) en un solo vector de características. Por
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ejemplo, la figura 3-3 representa un posible ejemplo de fusión temprana, en

el que la extracción de características se aplica de forma independiente sobre

ambas modalidades y el vector de características resultante es sólo la concate-

nación de las mismas. Este último proceso es uno de los métodos más rápidos

para fusionar características, sin embargo, puede realizarse aplicando otras

técnicas como la adición por puntos. Una de las principales ventajas de este

método de fusión es que sólo es necesario entrenar un modelo de clasificación.

• Fusión tardía de elementos. En este caso, las fuentes de información siguen

caminos totalmente independientes, que incluso pueden no tener los mismos

componentes o procesos, hasta dar una salida de clasificación por modelos de

clasificación diferentes e independientes según la modalidad. La figura 3-3

representa un posible ejemplo de fusión tardía, en el que ambas modalidades

tienen modelos de clasificación independientes y la salida de los mismos se fu-

siona. Tanto si el modelo proporciona una etiqueta blanda (cualquier métrica

de salida que proporcione información sobre la probabilidad predicha de perte-

nencia a una clase, por ejemplo, un 50% de probabilidad de pertenencia a la

clase positiva) como una etiqueta dura (clase predicha sin ninguna informa-

ción de probabilidad, por ejemplo, etiqueta "1" y "0" para la clase positiva y

negativa), pueden utilizarse diferentes técnicas para realizar dicha fusión de

datos. Por ejemplo, una de las técnicas más comunes es la realización de un

esquema de ponderación [155] dado por

𝑐 = 𝑎𝑟𝑔 𝑚𝑎𝑥

⎧⎨⎩
𝑀∏︁

𝑚=1
𝑃𝑖(𝑋|𝐶𝑚)𝛼𝑚

⎫⎬⎭, (3.4)

donde 𝑀 es la cantidad total de modalidades, 𝑋 es la entrada de datos,

𝑃𝑖(𝑋|𝐶𝑚) es la probabilidad de que 𝑋 pertenezca a la clase 𝑖 y la propor-

cione el clasificador de una modalidad específica 𝐶𝑚. Los diferentes pesos

para cada modalidad 𝛼𝑚 se determinan durante la etapa de entrenamiento y

sólo necesitan satisfacer Σ𝑀
𝑚=1𝛼𝑚 = 1. La principal ventaja de la fusión tardía

es el diseño ad-hoc que se puede realizar para las diferentes modalidades de

forma independiente, sin embargo, ese hecho también conduce a la necesidad

de más de un clasificador.
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• Fusión intermedia. Esta fusión de datos implica la transformación de las car-

acterísticas extraídas en una nueva representación de los datos originales, es

decir, el cambio de base. Se suele aplicar sobre todo cuando se trata de mode-

los de aprendizaje profundo, en los que la fusión de datos puede producirse en

cualquier parte de las capas internas de la red neuronal. Esta fusión es más

flexible en comparación con las otras dos, en las que la información se fusiona

tanto al principio como al final. Sin embargo, hay muy pocos ejemplos de esta

técnica en la literatura, al contrario que la anterior.
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Figure 3-3: Técnicas de fusión temprana y tardía de datos para características fisi-
ológicas y de audio/voz, con dimensiones 𝑁 y 𝑀 respectivamente.

En el capítulo 6 se ofrecen más detalles sobre el uso específico de estas técnicas

para este trabajo de investigación.

3.1.7 Clasificación emocional
Esta etapa, junto con la fusión de datos, es una de las últimas que se llevan a cabo

para conseguir un modelo de computación afectiva totalmente entrenado y probado,

véase la Figura 3-1.

3.1.7.1 Compensación del sesgo (bias) y varianza (variance)

Antes de describir los diferentes modelos que son de interés para este trabajo, se

podría explicar y abordar adecuadamente el trade-off Bias-Varianza para entender
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todos los conceptos asociados dentro de esta etapa.

El rendimiento de los algoritmos de aprendizaje automático se define principal-

mente por su sesgo y su varianza. La relación entre estas métricas está directamente

relacionada con los problemas de infra y sobreajuste. Por ejemplo, consideremos la

ecuación 3.2, pero suponiendo que 𝑓(𝑥) define la verdadera relación entre 𝑦 y 𝑥. En

ese caso, y suponiendo que creamos o diseñamos una función 𝑓 ′(𝑥) que corresponde

a nuestro modelo de aprendizaje automático, la calidad de dicho algoritmo en puntos

de prueba no vistos puede medirse por el error cuadrático medio (MSE) como

𝑀𝑆𝐸𝑓 ′ = 𝐸[(𝑦 − 𝑓 ′(𝑥))2], (3.5)

lo cual se puede descomponer en

𝑀𝑆𝐸𝑓 ′ = 𝐸[(𝑓(𝑥) + 𝑟 − 𝑓 ′(𝑥))2]

= 𝐸[(𝑓(𝑥) + 𝑟 − 𝑓 ′(𝑥) + 𝐸[𝑓 ′(𝑥)]− 𝐸[𝑓 ′(𝑥)])2]

= 𝐸[(𝑓(𝑥)− 𝐸[𝑓 ′(𝑥)])2] + 𝐸[(𝐸[𝑓 ′(𝑥)− 𝑓 ′(𝑥))2] + 𝐸[𝑟2]+

+ 2𝐸[(𝐸[𝑓 ′(𝑥)]− 𝑓 ′(𝑥))(𝑓(𝑥)− 𝐸[𝑓 ′(𝑥)])]

𝑁𝑜𝑡𝑒 : 𝐸[𝐸[𝑓 ′(𝑥)]] = 𝑓 ′(𝑥)

: el último término se cancela, es cero.

= 𝐸[(𝑓(𝑥)− 𝐸[𝑓 ′(𝑥)])2] + 𝐸[(𝐸[𝑓 ′(𝑥)− 𝑓 ′(𝑥))2] + 𝐸[𝑟2]

= 𝑏𝑖𝑎𝑠[𝑓 ′(𝑥)]2 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒[𝑓 ′(𝑥)] + 𝜎2
𝑟 ,

(3.6)

donde 𝑟 es el ruido residual o aleatorio con media cero y varianza 𝜎2
𝑟 (𝐸[𝑟2]), 𝑏𝑖𝑎𝑠 es

la diferencia entre el valor medio esperado de la predicción y el valor real, y 𝑣𝑎𝑟𝑖𝑎𝑛𝑧𝑎

cuantifica la consistencia del valor de predicción de salida en función de la variación

de los puntos de datos de entrenamiento. Un ejemplo ilustrativo de estos conceptos

se muestra en la Figura 3-4, de la que se pueden obtener diferentes conclusiones:

• Un modelo con un sesgo alto y una varianza baja se encuentra en la zona de

infraajuste, siendo incapaz de ajustarse a los datos de entrenamiento. Este

hecho conduce a elevados errores de entrenamiento y prueba.

• Un modelo con un sesgo bajo y una varianza alta está dentro de la zona

de sobreajuste, ajustándose demasiado a los datos de entrenamiento y siendo
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Figure 3-4: Compensación entre el sesgo y la varianza con el infraajuste (Underfitting
Zone), el sobreajuste (Overfitting Zone) y las zonas óptimas (Optimal Zone).

incapaz de generalizar o ajustarse a nuevos datos de prueba no vistos. Este

hecho conduce al menor error de entrenamiento a costa de un elevado error de

prueba.

• El mejor modelo es el que minimiza los errores de los valores predichos erróneos

(bajo sesgo) y presenta una consistencia robusta a las variaciones de los datos

de entrenamiento (baja varianza). Esto se identifica como la zona óptima, en

la que el modelo logra el equilibrio perfecto entre el error de entrenamiento y

el de prueba.

• Incluso cuando se consigue el menor sesgo y varianza dentro de la zona óp-

tima, la calidad del modelo vendrá determinada por el error irreducible, que

es irrelevante para el modelo y está relacionado con el ruido inherente a los

datos.

Hay que tener en cuenta que es esencial considerar el comportamiento habitual del

sesgo y la varianza de los distintos algoritmos de aprendizaje automático que se van

a evaluar. De hecho, los algoritmos tradicionales de aprendizaje automático sufren

este problema de compensación a medida que aumenta su complejidad.

3.1.7.2 Algortimos de aprendizaje máquina

Para este trabajo de investigación, se utilizan diferentes modelos de aprendizaje au-

tomático bien conocidos, basados en revisiones actuales centradas en el reconocimiento

de emociones [26]. Se describen como sigue:

75 Jose A. Miranda, Tesis Doctoral



Capítulo 3. Bases de datos y aprendizaje automático para el reconocimiento de
emociones

• Máquinas de vectores de apoyo (SVM) |citesvmreview. Este algoritmo de clasi-

ficación supervisada es uno de los algoritmos de aprendizaje automático más

populares. Aunque originalmente fue propuesto únicamente para problemas de

clasificación binaria, a lo largo de los años se ha extendido y aplicado también

para problemas multiclase. La idea principal de este clasificador se basa en en-

contrar un hiperplano que separe mejor los datos en las diferentes clases. Hay

que tener en cuenta que los datos son las diferentes características extraídas

que se introducen en el clasificador. En este contexto, es necesario definir dos

elementos principales para entender el concepto de hiperplano: los vectores de

soporte y los márgenes. Como se muestra en la Figura refch3:svmhyperplane,

suponiendo una clasificación binaria con dos características, los vectores de

soporte o puntos del vector de soporte son los más cercanos al hiperplano

(parte media del margen). Desde una perspectiva 2D, el hiperplano puede

conceptualizarse como la línea que separa ambas clases dada por la ecuación

3.3.

Feature #2
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Support vector points
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Negative class

Figure 3-5: Ilustración del hiperplano para el clasificador SVM para la clasificación
binaria (los puntos negros son la clase positiva, y los puntos grises son la clase
negativa).

Sin embargo, para definir el hiperplano completo, dicha ecuación se expande

o se generaliza a las 𝑀 dimensiones del problema como sigue,

𝑦 = 𝑤0 + 𝑤1𝑥1 + 𝑤1𝑥1 + ... + 𝑤𝑀𝑥𝑀

= 𝑤0 +
𝑀∑︁

𝑛=1
𝑤𝑛𝑥𝑛

= 𝑏 + 𝑤𝑇 𝑋,

(3.7)
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donde 𝑤𝑇 son los puntos del vector soporte, 𝑋 son los puntos de entrenamiento

proporcionados, 𝑏 es el término sesgado o el desplazamiento de dicho hiper-

plano, y 𝑦 es la etiqueta de clase (positiva o negativa para un problema bi-

nario). Así, podemos definir cualquier hiperplano como el conjunto de puntos

que satisfacen

𝑤𝑇 𝑋 + 𝑏 = 0. (3.8)

Obsérvese que, teniendo en cuenta estas ecuaciones, el problema de opti-

mización para obtener el hiperplano óptimo se basa en maximizar el margen

para separar mejor los datos en las diferentes clases, como ya se ha comen-

tado anteriormente. Por tanto, dicho problema de optimización consiste en

realidad en seleccionar dos hiperplanos iniciales que cumplan las siguientes

restricciones:

𝑤𝑇 𝑋 + 𝑏 ≥ 1, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑙𝑎𝑠𝑠 −→ 𝑦 = 1, (3.9)

𝑤𝑇 𝑋 + 𝑏 ≤ −1, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑙𝑎𝑠𝑠 −→ 𝑦 = −1. (3.10)

These constraints can be rearranged and expressed by the following,

𝑦 * (𝑤𝑇 𝑋 + 𝑏) ≥ 1. (3.11)

No obstante, las ecuaciones y supuestos anteriores sólo son válidos si los datos

son linealmente separables, lo que no ocurre cuando se trata de información

fisiológica debido a la naturaleza no lineal de la misma. En estos casos, la

ecuación anterior se modifica añadiendo un parámetro extra, 𝜁, que permite

o contabiliza el error de clasificación durante el entrenamiento. Esto nos ll-

eva a los márgenes suaves, en lugar de los márgenes duros, con la siguiente

formulación:

𝑦𝑖 * (𝑤𝑇 𝑋 + 𝑏) ≥ 1− 𝜁. (3.12)

Además, se utiliza un hiperparámetro 𝐶 para manejar ese coste de clasificación

errónea y mantener el control de los márgenes suaves. Sin embargo, en la may-

oría de los casos en que los datos no son linealmente separables, la aplicación

de márgenes suaves no es suficiente, y es necesario aplicar diferentes kernels.
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kernel

Figure 3-6: Ilustración del truco del núcleo para un problema binario.

La aplicación de un kernel puede considerarse como un mapeo de los datos en

dimensiones más altas, de modo que puedan ser linealmente separables en un

nuevo espacio de características de mayor dimensión, Figura 3-6.

Además, estos kernels utilizan el llamado truco del kernel mediante el cual

no es necesario conocer ni preocuparse por estas transformaciones de mayor

dimensión, ya que las funciones del kernel admiten entradas en el espacio

dimensional inferior original y devuelven el producto punto de los vectores

transformados en el espacio dimensional superior. Por ejemplo, uno de los nú-

cleos comúnmente empleados en los sistemas de reconocimiento de emociones

y también utilizado en este trabajo de investigación es el núcleo gaussiano o

de función de base radial (RBF), que viene dado por

𝐾(𝑋1, 𝑋2) = 𝑒𝑥𝑝(−||𝑋1 −𝑋2||
2𝜎2 ), (3.13)

donde ||𝑋1 − 𝑋2|| es la distancia euclidiana (norma L2) entre los puntos de

datos (puntos de datos de características) 𝑋1 y 𝑋2, y 𝜎 es el hiperparámetro

que se debe ajustar para considerar que dos puntos son similares (pertenecen

a la misma clase). Nótese que este kernel está acotado superiormente por

1, ya que la distancia entre dos puntos que son extremadamente similares es

cero. En función del valor de 𝜎, la región de similitud (zona donde 𝐾(𝑋1, 𝑋2)

es superior a cero) entre los puntos cambiará, Figura 3-7. Este algoritmo
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𝐾(𝑋1, 𝑋2)

1

||𝑋1 − 𝑋2||𝑅𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑓𝑜𝑟 σ1

𝑅𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑓𝑜𝑟 σ2

𝑅𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑓𝑜𝑟 σ3

𝜎1 < 𝜎2 < 𝜎3

Figure 3-7: RBF valores del núcleo en función de la distancia entre los dos puntos
que se evalúan para diferentes 𝜎.

es un clasificador discriminativo cuyo sesgo y varianza están determinados

por los hiperparámetros 𝐶 y 𝜎 para los márgenes suaves y el kernel RBF

respectivamente. La principal ventaja es que presenta una mayor eficiencia de

memoria en comparación con otros clasificadores (sólo necesita almacenar los

vectores de soporte, no todos los puntos de datos de entrenamiento), pero no

funciona bien cuando se lleva con demasiado solapamiento entre las diferentes

clases.

• K-Nearest Neighbours (KNN) [175]. Este es también un algoritmo de clasifi-

cación supervisado, sin embargo, se llama un clasificador lazy. Desde un punto

de vista matemático, no hay un proceso de aprendizaje real dentro del algo-

ritmo. En su lugar, busca la mejor distancia 𝑑 y el número de vecinos 𝑘 que

maximiza la separación de las clases. Por lo tanto, la realización de predic-

ciones ante la llegada de nuevos datos requiere el cálculo de dicha distancia con

cada uno de los puntos de datos de entrenamiento y la posterior comparación

con los 𝑘 vecinos circundantes para determinar la clase de pertenencia. Este

algoritmo asume que existen cosas similares en estrecha proximidad. Hay que

tener en cuenta que se pueden utilizar diferentes tipos de distancias (euclid-

iana, Minkowski, bloque de ciudades, Mahalanobis, etc.), así como diferentes

algoritmos de ordenación para encontrar los 𝑘 vecinos más cercanos tras el
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cálculo de las distancias.

Desde un punto de vista práctico, el KNN es uno de los algoritmos más sencillos

de aplicar. Por lo tanto, es una elección correcta para un primer enfoque de

prueba de concepto. Sin embargo, se vuelve significativamente más lento a

medida que aumenta el número de muestras de entrenamiento, además de

afectar a la eficiencia de la memoria.

• Métodos de conjunto (ENS) [176]. Estos métodos son en realidad un conjunto

de técnicas de aprendizaje automático, más que un clasificador. Se basan en la

combinación de diferentes modelos base o clasificadores débiles para producir

un clasificador óptimo o fuerte. Dicha combinación se suele realizar en forma

de "bagging" o "boosting". En el bagging, cada modelo se entrena de forma

independiente con el mismo conjunto de entrenamiento, mientras que en el

boosting, cada clasificador débil se entrena teniendo en cuenta el rendimiento

del clasificador anterior aplicando un mecanismo de ponderación de datos (se

asignan pesos más altos a las instancias clasificadas incorrectamente).

Para este trabajo de investigación se utilizan métodos de boosting ensemble

y, en concreto, se aplica el clasificador Adaptive Boosting o AdaBoost. Este

clasificador es muy popular para la clasificación binaria y los clasificadores dé-

biles que se emplean para aplicarlo suelen ser árboles de decisión (árboles con

un solo nodo o árboles de decisión de un solo nivel) o árboles poco profundos

(árboles con una profundidad muy limitada). Obsérvese que este tipo especí-

fico de árboles mejora la comprensibilidad. Así, para cada aprendiz débil (𝑚)

y para todas las instancias del conjunto de entrenamiento (𝑁), este clasificador

calcula el error de clasificación ponderado como

𝜖𝑚 =
∑︀𝑁

𝑖=1 𝑤
(𝑚)
𝑖 𝐼(𝑓𝑚(𝑥𝑖) ̸= 𝑦𝑖)∑︀

𝑖=1 𝑤
(𝑚)
𝑖

, (3.14)

donde 𝑤
(𝑚)
𝑖 es el peso de la instancia 𝑖 para el aprendiz 𝑚, y 𝐼 es la función

de pérdida definida por

𝐼(𝑓𝑚(𝑥), 𝑦) =

⎧⎪⎪⎨⎪⎪⎩
0, if 𝑓𝑚(𝑥𝑖) = 𝑦𝑖

1, if 𝑓𝑚(𝑥𝑖) ̸= 𝑦𝑖

(3.15)
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Tras el entrenamiento, este clasificador predice la etiqueta de la nueva in-

formación no vista siguiendo una combinación lineal ponderada de todos los

clasificadores débiles considerados (𝑀), que viene dada por lo siguiente

𝑔(𝑥) = 𝑠𝑖𝑔𝑛

(︃
𝑀∑︁

𝑚=1
𝛼𝑚𝑓𝑚(𝑥)

)︃
, (3.16)

donde 𝛼𝑚 es el peso total asignado a cada aprendiz débil dado por

𝛼𝑚 = 1
2 𝑙𝑜𝑔

(1− 𝜖𝑚)
𝜖𝑚

. (3.17)

Desde una perspectiva práctica, la etapa de inferencia de este algoritmo de

aprendizaje automático requiere menos almacenamiento y posee una menor

complejidad computacional y temporal en comparación con los dos algoritmos

revisados anteriormente. Sin embargo, es más sensible a los datos ruidosos

y a los valores atípicos, por lo que requiere que los datos estén debidamente

filtrados y libres de ruido antes de alimentar a la máquina.

3.1.7.3 Técnicas de validación cruzada

Además del modelo específico que se va a aplicarla separación de los datos en

conjuntos de entrenamiento, validación y prueba debe realizarse antes del proceso

de entrenamiento. Aunque la separación de estos conjuntos de datos suele estar

integrada en las tareas del procedimiento de clasificación, también puede concep-

tualizarse como una operación adicional, véase "Evaluación del rendimiento" en la

figura 3-1. En este contexto, el conjunto de entrenamiento puede definirse como el

conjunto del que el modelo va a aprender los patrones subyacentes y ajustar sus

hiperparámetros. El conjunto de validación es el afectado por las técnicas de vali-

dación cruzada, a través del cual se puede obtener una estimación del rendimiento del

modelo. Hay que tener en cuenta que este conjunto es en realidad parte del conjunto

de entrenamiento (el modelo ve estos conjuntos en el entrenamiento). Por último,

la parte de prueba es la que no es vista por el modelo durante el entrenamiento y

proporciona la evaluación final e imparcial de un modelo completamente entrenado.

Sin embargo, existen diferentes métodos para separar estos conjuntos, y la selección

de una técnica u otra depende principalmente de la cantidad de datos y de la necesi-

dad de afinar los hiperparámetros. Estas técnicas de separación se agrupan bajo el
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término CV. Para este trabajo de investigación se han utilizado diferentes técnicas

de CV adaptadas a las bases de datos de reconocimiento de emociones. Se describen

a continuación:

• Retención de datos. Este es el método más sencillo de CV en el que los datos

se dividen en dos conjuntos (de entrenamiento y de validación). Durante este

CV, el modelo se ajusta con el primero y se evalúa utilizando los datos dentro

del segundo. Obsérvese que el modelo final entrenado se obtiene utilizando

todo el conjunto de datos (entrenamiento y validación). Aunque también se

puede obtener un tercer conjunto de datos para considerarlo como el conjunto

de datos de prueba, datos no vistos que no se utilizan en absoluto durante la

etapa de entrenamiento. Una proporción típica de división es del 80% para

el entrenamiento y del 20% para la prueba, aunque esta proporción depende

del conjunto de datos. La principal desventaja de este método es el riesgo de

sobreajuste (alta varianza)ya que los diferentes conjuntos (diferentes distribu-

ciones de la división) pueden incluso afectar a los resultados obtenidos. Hay

que tener en cuenta que, al reducirse el conjunto de datos de entrenamiento

cuando se utiliza esta técnica, se puede incluso correr el riesgo de perder pa-

trones inherentes a las señales o datos. No se puede asegurar un control es-

tricto de los datos específicos dentro del conjunto de entrenamiento después

de la división, lo que incluso afecta a los resultados para diferentes conjuntos

(diferentes distribuciones de la división).

• La técnica anterior se basa en la disminución del tamaño del conjunto de

entrenamiento original, lo que puede dar lugar a conjuntos de datos más pe-

queños y aumenta el riesgo de perder los patrones inherentes a las señales o

los datos. Para superar las limitaciones de la técnica anterior y por lo tanto,

para hacer frente a esos problemas y disminuir la varianza del entrenamiento,

este método se basa en dividir el conjunto de entrenamiento en 𝑘 particiones,

que pueden proporcionar hasta 𝑘 posibilidades diferentes para entrenar y val-

idar el sistema. En comparación con la técnica anterior, se suele preferir este

método, ya que puede ofrecer una medida más realista (menos optimista) del

rendimiento del modelo. La principal desventaja de este método es el tiempo

de cálculo necesario para ejecutar 𝑘 veces el entrenamiento del modelo.
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• Dejar una muestra para probarla (LOTO). En este método, se deja una mues-

tra fuera del proceso de entrenamiento para posteriormente probar el modelo

con ella. Sin embargo, para el caso de uso de reconocimiento de emociones,

esta técnica puede modificarse para identificar una muestra como prueba del

experimento. Por ejemplo, en un experimento basado en el registro fisiológico

mientras se visualizan diferentes imágenes, un ensayo se identificaría como los

datos fisiológicos capturados durante la visualización de una de las imágenes.

Además, el hecho de que el número de posibles combinaciones de entrenamiento

esté definido por el número de ensayos, hace que esta técnica tenga las mis-

mas ventajas y desventajas que para el 𝑘− 𝑓𝑜𝑙𝑑 CV con 𝑘 igual al número de

ensayos.

• Leave-One-Subject-Out (LOSO). Esta técnica sigue el mismo concepto que

LOTO, pero en este caso la muestra que se deja fuera del entrenamiento es un

sujeto o voluntario completo. Como se ha dicho anteriormente, considerando

el mismo ejemplo de reconocimiento de emociones por imágenes, todos los

datos recogidos de un sujeto se utilizan para las pruebas mientras que el entre-

namiento se realiza con el resto de sujetos o voluntarios. La principal diferencia

de esta técnica con respecto a LOTO es la variabilidad de datos que se ob-

serva en el conjunto de prueba. De hecho, el conjunto de pruebas en LOTO

se basa en un solo ensayo, que se identifica con una etiqueta, mientras que

el conjunto de pruebas en LOSO se basa en diferentes ensayos de los mismos

voluntarios. Así, mientras que LOSO puede asegurar, al menos para un su-

jeto, una distribución de prueba representativa, LOTO está siempre sujeto a

la incertidumbre de tener un conjunto de pruebas representado por una sola

etiqueta.

Para este trabajo de investigación, se implementan algunas de estas técnicas para

manejar la generación de los diferentes conjuntos (entrenamiento, validación y prueba)

para los modelos de aprendizaje automático. En concreto, el problema del re-

conocimiento de emociones requiere la aplicación de estas estrategias para generar

dos tipos de modelos: los dependientes del sujeto y los independientes. Los primeros

se entrenan, validan y prueban utilizando los datos de un solo voluntario, mientras

que los segundos utilizan los datos de todos los voluntarios para crear un modelo
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global. La principal diferencia entre estos modelos es la personalización. De hecho,

la mayor parte de la variabilidad entre los sujetos reside en la naturaleza dinámica

de sus estados afectivos y su experiencia previa. Este hecho puede demostrarse

por la superioridad de los modelos dependientes del sujeto sobre los modelos in-

dependientes del sujeto en la literatura [154]. Por lo tanto, en consonancia con el

capítulo 2, la interpretación de los estímulos y los cambios fisiológicos dependen en

gran medida de los voluntarios. Por lo tanto, surge la personalización, como se hizo

en [26], en la que los autores concluyeron que se podría desplegar un modelo de

reconocimiento de emociones independiente del sujeto pero, en algún momento, será

necesaria la personalización del usuario para mejorar el sistema. Por estos motivos,

existe la necesidad en la literatura, a la hora de afrontar el reconocimiento de emo-

ciones mediante machine learning convencional, de plantear nuevas técnicas de CV

que aporten algún tipo de personalización. De hecho, observando otros campos que

utilizan también información humana, se puede observar la aplicación de técnicas

CV híbridas que básicamente combinan modelos [7] independientes y dependientes

del sujeto. Dentro de este contexto y, hasta donde yo sé, no hay ningún trabajo

de investigación de reconocimiento de emociones que aplique técnicas CV híbridas.

Por ello, además de aplicar algunas de las técnicas revisadas, este trabajo de in-

vestigación propone la utilización de la técnica denominada Leave-hAlf-Subject-Out

(LASO) CV. Obsérvese que la representación gráfica de las técnicas LOSO, LOTO,

y LASO CV se muestra en la Figura 3-8.

A. Ferrari et al.: On the Personalization of Classification Models for HAR

FIGURE 1. A graphical representation of the three main classification models.

proves to be the most prevalent monitoring technology for
activity recognition [33]. For this reason, in recent years,
several HAR approaches have been designed to recognize
ADLs by processing signals acquired from smartphones and
smartwatches [34]–[37].

B. PERSONALIZATION IN HAR
Although research on activity recognition techniques from
wearable devices is very active, the resulting systems are
limited in their ability to generalize to new users and/or new
environments, and require considerable effort and customiza-
tion to achieve good performance in a real-context [14], [15].

One of the most relevant difficulty to face with new situ-
ations is due to the population diversity problem [17], that
is, the natural differences between users’ activity patterns,
which implies that different executions of the same activity
are different.

According to Zunino et al. [38], two factors influence why
the same activity is carried out in a different way: the inter-
subject variability, which either refers to anthropometric dif-
ferences of body parts or to personal styles in accomplishing
the activity (in other words, different subjects may differently
perform the same activity); and the intra-subject variability,
which represents the random nature of each class of activity
due to pathological conditions or environmental factors (in
other words, a subject never performs the same activity in the
same exact way).

Thus, as users of mobile sensing applications increase in
size, the differences between people cause the accuracy of
classification to degrade quickly [17].

To face this problem, activity classification models should
be able to generalize as much as possible with respect to the
final user and the real execution context.

In order to achieve generalizable activity recognition mod-
els, three approaches aremainly adopted in literature: subject-
independent, subject-dependent, and hybrid.

The subject-independent (also called impersonal) model
does not use the end user data for the development of the
activity recognition model. It is based on the definition of a
single activity recognitionmodel that must be flexible enough
to be able to generalize the diversity between users and it

should be able to have good performance once a new user
is to be classified.

The subject-dependent (also called personal) model only
uses the end user data for the development of the activ-
ity recognition model. The specific model, being built with
the data of the final user, is able to capture her/his pecu-
liarities, thus it should well generalize in the real context.
The flaw is that it must be implemented for each end
user [39].

The hybrid model uses the end user data and the data of
the other users for the development of the activity recognition
model. In other words the classification model is trained both
on the data of the users and on a part of the data of the final
user. The idea is that the classifier should recognize easier the
activity performed by the final user.

Figure 1 shows a graphical depiction of the three models
to better clarify their differences.

Tapia et al. [40] introduced the subject-independent and
subject-dependent models, and later Weiss and Lockhart [18]
the hybrid model.

The models were compared by different researchers and
also extended in order to achieve better performance.

Medrano et al. [5] demonstrated that the subject-
dependent approach achieves higher performance then
subject-independent approach for falls detection, called
respectively personal and generic fall detector.
Shen et al. [41] achieved similar results for activity recog-
nition and come to the conclusion that the subject-dependent
(termed personalized) model tends to perform better than the
subject-independent (termed generalized) one because user
training data carries her/his personalized activity information.
Lara et al. [42] consider subject-independent approach more
challenging because in practice, a real-time activity recog-
nition system should be able to fit any individual and they
consider not convenient in many cases to train the activity
model for each subject.

Weiss and Lockhart [18] and Lockhart and Weiss [43]
compared the subject-independent and the subject-dependent
(termed impersonal and personal respectively) with the
hybrid model. They concluded that the models built on the
subject-dependent and the hybrid approaches achieve same

32068 VOLUME 8, 2020

Figure 3-8: Representación gráfica de las técnicas LOSO, LOTO y LASO [7].

Independientemente del tipo de modelo y como se indica en la sección 3.1.2, los

datos fisiológicos recogidos durante los experimentos se segmentan en ventanas de

procesamiento. Éstas son sometidas a un solapamiento para aumentar el rendimiento

de la delineación fisiológica, lo que puede afectar en gran medida a la interpretación

de los resultados obtenidos cuando se utilizan las técnicas de CV detalladas. Por
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ejemplo, en el caso de aplicar un CV de 𝑘 pliegues sobre un vector de característi-

cas extraídas de señales fisiológicas filtradas, con ventanas y superpuestas, podrían

existir pliegues, es decir, ventanas de procesamiento, que contengan parte de la in-

formación del pliegue anterior. Este hecho puede llevar a una interpretación demasi-

ado optimista de los resultados y, aunque depende de la longitud del solapamiento,

debe evitarse. Así, centrándonos en el reconocimiento de emociones mediante el

uso de señales fisiológicas, podrían preferirse estrategias que no indaguen en este

problema, como LOTO, LOSO y LASO. Hay que tener en cuenta que esta última

recomendación puede verse afectada por la cantidad de datos disponibles para el

entrenamiento, lo que puede imposibilitar la aplicación de algunas técnicas como

LOTO para modelos dependientes del sujeto.

3.2 Bases de datos abiertas
Dentro de la comunidad de la computación afectiva, diferentes conjuntos de datos

se ocupan del reconocimiento de emociones utilizando señales fisiológicas. Las más

comunes son MIT [177], DEAP [138], MAHNOB [12], DECAF [145], ASCERTAIN

[178], y WESAD [179]. La tabla 3.1 resume los principales detalles de dichas bases

de datos. Estas bases de datos abiertas son consideradas como un sólido punto de

referencia por la comunidad científica. En esta sección se revisan las bases de datos

de reconocimiento de emociones de interés para este trabajo de investigación. Nótese

que anteriormente, en [180] y [181], realizamos un análisis detallado de algunas

de estas bases de datos abiertas disponibles y aportamos conclusiones sobre sus

metodologías y enfoques de reconocimiento emocional. Debido a la similitud con

respecto a algunos de los mecanismos de elicitación emocional, las metodologías

experimentales y, sobre todo, la información fisiológica de interés para este trabajo,

se eligen sólo dos de ellas para seguir realizando pruebas de concepto de detección

de miedo basadas en sus señales y estímulos, lo que se detalla en el capítulo 4.

Por un lado, las primeras pruebas de concepto de este trabajo de investigación

se desarrollaron utilizando DEAP [138]. Esta base de datos contiene información

fisiológica de 32 voluntarios (16 mujeres). El experimento consiste en un total de

40 video-clips de un minuto de duración cada uno. Los estímulos se seleccionaron

a partir de un conjunto más amplio o de una etapa de preetiquetado basada en
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Table 3.1: Las bases de datos de reconocimiento de emociones más comunes con
una configuración de laboratorio utilizadas dentro de la comunidad científica de la
computación afectiva.

Base de datos Sujetos/as (M/F) Etiquetas Caso de Uso Precisión Año
MIT [177] 1 (0/1) Discrete General 81.00% 2005

DEAP [138] 32 (16/16) Arousal/Valence General 57.00/62.70% 2012
MAHNOB-HCI [12] 30 (13/17) Arousal/Valence General 46.20/45.50% 2012

DECAF [145] 30 (16/14) PAD General 55.00/60.00/50.00% 2015
ASCERTAIN [178] 58 (37/21) Arousal/Valence General 66.00/68.00% 2017

WESAD [179] 15 (12/3) Arousal/Valence Estres 86.46% 2018

las valencias, excitaciones y clasificaciones de dominancia recogidas por SAM. Los

sensores periféricos (fisiológicos) incluidos son el electroencefalograma, el electro-

miograma, la amplitud de la respiración, el GSR, el electrooculograma, el PPG y el

SKT. En cuanto a algunas de las limitaciones de este conjunto de datos, debido a la

configuración de laboratorio, los voluntarios estaban muy limitados en términos de

movimiento, por lo que los modelos entrenados no son válidos para las condiciones

de la vida real. Hay que tener en cuenta que se realizó un registro de línea de base de

cinco segundos entre los estímulos utilizando una cruz de fijación en la pantalla. Por

último, los autores de la base de datos crearon tres sistemas binarios, cada uno de los

cuales infiere un nivel bajo o alto de arousal, valencia y agrado, en los que utilizaron

las calificaciones autoinformadas como verdad de base (etiquetas). Presentaron es-

tos resultados como evaluación comparativa y obtuvieron las siguientes métricas de

precisión media (ACC) y puntuación F1: 57,00% (ACC) y 53,30% (puntuación F1)

para la excitación, 62,70% (ACC) y 60,80% (puntuación F1) para la valencia, y

59,10% (ACC) y 53,80% (puntuación F1) para el gusto. Esta base de datos es de

especial interés principalmente por dos factores. En primer lugar, contiene la misma

información fisiológica que la pulsera de Bindi. En segundo lugar, las etiquetas

autodeclaradas recogidas durante los experimentos contienen espacio PAD. En el

capítulo 4 se ofrecen más detalles técnicos sobre el sistema de computación afectiva

DEAP y los propuestos tras su publicación.

Por otro lado, el conjunto de datos MAHNOB-HCI incluye datos fisiológicos de

30 participantes en el estudio (17 mujeres) [12]. Este conjunto de datos de re-

conocimiento de emociones basado en el laboratorio contiene datos de un total de

20 clips de vídeo por voluntario, que se seleccionaron a partir de un conjunto mayor

o de una etapa de preetiquetado como DEAP y que tenían una duración media de
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aproximadamente 81 segundos, entre 34,9 y 117 segundos (𝑀 = 81, 4𝑠; 𝑆𝐷 = 22, 5𝑠).

Las respuestas fisiológicas registradas se adquirieron utilizando el sistema Biosemi

active II, e incluían ECG, GSR, amplitud de la respiración, SKT, electroencefalo-

grama, mirada de los ojos y vídeos de la cara y el cuerpo. En cuanto al conjunto

de datos DEAP, la configuración de laboratorio hace que los modelos entrenados no

sean válidos para las condiciones de la vida real. Sin embargo, una de las princi-

pales diferencias con DEAP es que en MAHNOB los autores tuvieron en cuenta las

recuperaciones emocionales de los voluntarios entre los estímulos, en lugar de lim-

itarse a esperar cinco segundos entre ellos. De hecho, antes de ver cualquier vídeo

emocional, se mostraron a los participantes diferentes clips neutros. Este proceso se

utilizó para recuperar un nivel fisiológico basal, disminuir el sesgo emocional después

de experimentar una emoción y, en definitiva, manejar las diferencias fisiológicas in-

trasujeto. Así, todas las respuestas registradas para cada estímulo contenían 30

segundos de datos al principio y al final del intervalo correspondiente a este proceso

de recuperación. Por último, los autores de la base de datos crearon dos sistemas

no binarios de reconocimiento de emociones, cada uno de los cuales infería un nivel

bajo, medio y alto de arousal y valencia, respectivamente. Para obtener la verdad

básica, utilizaron un mapeo entre las calificaciones de emoción discreta autoinfor-

madas y las dimensiones emocionales basadas en [5]. Consiguieron un promedio de

métricas de ACC y de puntuación F1 de hasta el 46,20

A pesar de los beneficios que estas bases de datos aportan a este trabajo de investi-

gación, no están pensadas para elicitar específicamente el miedo y así poder detectar

mejor la situación de riesgo en contextos de violencia de género. Así, pueden ser

utilizadas para generar y estudiar pruebas de concepto para el motor de aprendizaje

automático del miedo en el que se centra este trabajo de investigación e incluso

aportar conclusiones preliminares para la amplia casuística dentro de esta compleja

tarea. Sin embargo, tal y como se ha comentado en los capítulos anteriores, al ser el

desentrañamiento entre las reacciones fisiológicas y el miedo en situaciones de vio-

lencia de género uno de los principales objetivos de este trabajo, se podría crear una

nueva base de datos dirigida realmente a nuestro caso de uso específico. Además,

dicha base de datos podría utilizar VR para proporcionar experimentos inmersivos

de elicitación de emociones más fuertes. Más detalles sobre la base de datos creada
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durante este trabajo de investigación y sus particularidades se encuentran en el

capítulo 6.

3.3 Conclusión
En este capítulo, hemos proporcionado una revisión y un análisis completos para

la generación y el procesamiento de bases de datos de reconocimiento de emociones,

desde un punto de vista experimental hasta los procedimientos de procesamiento de

datos que pueden aplicarse una vez terminada la base de datos.

En primer lugar, concluimos que no existe un protocolo estándar para el análisis y

la selección de los estímulos. Todos los conjuntos de datos disponibles públicamente

están pensados desde una perspectiva emocional general, es decir, con el objetivo

de identificar las emociones en general sin dirigirse a modelos emocionales binarios

especializados. Este hecho hace que la evaluación de los estímulos por parte de

expertos no sea tan crítica. Pero, para trabajos de investigación como el que se

aborda en este documento, esta estrategia no puede aplicarse y puede no ser ade-

cuada. La situación condicionada por los estímulos de las víctimas de la violencia

de género, así como sus posibles episodios de TEPT, hacen necesaria la ayuda de

expertos para ajustar y seleccionar los estímulos que se presentarán durante nue-

stros experimentos. En segundo lugar, se recomienda encarecidamente realizar un

análisis exploratorio de los datos para determinar algunos de los comportamientos

fisiológicos y llevar a cabo acciones específicas para tratar algunos problemas, como

la recuperación fisiológica de la elicitación de la emoción. En tercer lugar, hemos

detallado diferentes recomendaciones sobre las técnicas de CV a aplicar cuando se

trata de problemas de reconocimiento de emociones. Este hecho es de especial rel-

evancia debido a la variabilidad inter e intra que puede existir entre los diferentes

voluntarios en dichos experimentos. Esto hace que la validación, y otros procesos

clave como la normalización, sean parámetros a explorar bajo la amplia casuística

que presenta el problema de reconocimiento de emociones mediante el uso de infor-

mación fisiológica y física. Así, se seleccionan preferentemente nuevas técnicas de

CV que consideren la variabilidad intra e inter, como LASO, para ser utilizadas y

aplicadas sobre las técnicas comunes.

El trabajo de investigación que se presenta en este documento versa sobre la
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propuesta, estudio, diseño e implementación de una nueva base de datos de re-

conocimiento de emociones, diseño de aprendizaje automático del miedo y desarrollo

de un dispositivo wearable edge. Esto hace que el conocimiento de este Capítulo sea

esencial para entender los temas de los Capítulos siguientes.
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Capı́tulo 4
Prueba de concepto para clasificar miedo

Una vez revisado todo el estado del arte respecto a las emociones, la información

fisiológica, las bases de datos para el reconocimiento de emociones, y los diferentes

procedimientos de post-procesamiento para diseñar un modelo de aprendizaje au-

tomático totalmente probado, aplicaremos dichos conocimientos para diseñar difer-

entes sistemas de reconocimiento de emociones binarias de miedo utilizando las dos

bases de datos detalladas en la Sección 3.2. En concreto, en este capítulo, las arqui-

tecturas propuestas se basan únicamente en la parte fisiológica uni-modal de Bindi,

teniendo en cuenta la descripción de Bindi en la Sección 5.2. Así, estas propuestas

pretenden impulsar las primeras implementaciones embebidas de toda la cadena de

procesamiento de datos, incluyendo el motor de aprendizaje automático, dentro de

la pulsera inteligente de Bindi. Hay que tener en cuenta que la casuística y las

posibilidades multimodales se tratan y detallan en el Capítulo 6.

En los siguientes apartados comenzaremos abordando tres sistemas iniciales desar-

rollados sobre la base de datos DEAP. Posteriormente, debido a algunas limitaciones

observadas en DEAP, se utilizará la base de datos MAHNOB para diseñar otros dos

sistemas de reconocimiento binario de emociones de miedo. Por último, se com-

pararán todas las métricas de rendimiento generadas con respecto al estado del arte

actual en materia de reconocimiento de emociones y, más concretamente, de detec-

ción de miedo. Además, para contextualizar el alcance de los resultados obtenidos,

se tratan y discuten aspectos clave como el balance de clases, la selección de carac-

terísticas y otros procesos. Cabe destacar que los diferentes sistemas presentados en

este capítulo han sido diseñados y validados en un ordenador personal. En concreto,
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se utilizó Matlab® como plataforma de software y todo el código desarrollado tomó

Toolbox for Emotional feAture extraction from Physiological signals (TEAP) [148]

como referencia, que es una caja de herramientas de código abierto disponible actual-

mente para el procesamiento de datos fisiológicos y la extracción de características.

De hecho, hemos estado en contacto con los desarrolladores de TEAP y hemos

contribuido con correcciones a su repositorio. Finalmente, se ha desarrollado una

nueva caja de herramientas totalmente automatizada a partir de esa base, que da

cuenta desde el preprocesamiento de la señal hasta el entrenamiento y las pruebas

de aprendizaje automático. Esta herramienta se ha aplicado para diseñar los sis-

temas presentados en este capítulo, así como para diferentes experimentos con otros

conjuntos de datos y proyectos dentro del departamento bajo el que se ha realizado

este trabajo de investigación.

Los sistemas de reconocimiento de emociones propuestos se ordenan de menor a

mayor complejidad dentro de este Capítulo. De esta forma, las estrategias de inves-

tigación y desarrollo seguidas a lo largo de este trabajo han alimentado de forma

incremental las diferentes implementaciones realizadas con Bindi. Así, independi-

entemente de la complejidad de la arquitectura, la mayoría de ellas se basan en

los componentes mostrados en la Figura 4-1, que representa una descripción global

y general del entrenamiento del sistema de reconocimiento de miedos propuesto.

Incluye los pasos típicos de la cadena de procesamiento analizada en el capítulo

3, desde el análisis del conjunto de datos de señales fisiológicas hasta el preproce-

samiento de los datos brutos, la extracción de características y la clasificación de las

emociones. De hecho, la mayoría de los sistemas de reconocimiento de emociones

en la literatura siguen esta arquitectura pero centrándose en la clasificación de las

emociones desde un punto de vista general, detectando un conjunto de emociones

sin tener en cuenta si el usuario es hombre o mujer [133]. Sin embargo, si se dirige a

la identificación de una sola emoción que podría estar relacionada con una situación

específica y se tienen en cuenta las particularidades relacionadas con el género, se

podría aprovechar para conseguir un sistema más preciso. Esta última afirmación se

basa en la idea de que las mujeres reconocen la comunicación no verbal o la proso-

dia emocional con mayor precisión [54], como se revisa en la sección 2.3.3. Estos

conceptos no se tienen en cuenta en ningún sistema actual de reconocimiento de
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emociones mediante señales fisiológicas presentado en la literatura. Actualmente,

hasta donde yo sé, no existe ningún sistema de detección de emociones desarrol-

lado para identificar diferentes situaciones sociales críticas, como los episodios de

violencia de género. En este contexto, se podría diseñar un sistema de detección

de miedo especializado que activara un protocolo de protección que podría incluir

una conexión con un círculo de confianza o incluso con las fuerzas del orden, para

proporcionar inmediatamente la ayuda necesaria. Este último es uno de los princi-

pales objetivos de Bindi, tal y como se indica en el capítulo 1. Por lo tanto, el valor

añadido de la arquitectura propuesta en este capítulo es doble: (1) la generación de

una primera prueba de concepto para un sistema de reconocimiento binario espe-

cializado en el miedo utilizando únicamente información fisiológica (hasta ahora los

enfoques del estado de la técnica tratan con varias emociones), y (2) la consideración

de las limitaciones de procesamiento digital para seguir adaptando adecuadamente

dicho sistema para integrarlo en una plataforma de dispositivo de borde vestible que

permita la protección de las personas vulnerables.
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Figure 4-1: Visión general del proceso de entrenamiento para el sistema de re-
conocimiento de miedo propuesto que emplea datos de sensores fisiológicos y eti-
quetado de emociones de enfoque dimensional. Este último se introduce en el pro-
cedimiento de mapeo binario del miedo. Obsérvese que 𝑤#𝑛 denota las diferentes
ventanas obtenidas tras la segmentación de los datos, si procede.

Cabe destacar dos consideraciones específicas de diseño relativas al tipo de modelos

generados y a las restricciones específicas de incrustación de Bindi. Por un lado, a lo

largo del diseño de estas pruebas de concepto iniciales, se ha abordado y perseguido

la necesidad de un modelo robusto y fiable independiente del sujeto. El diseño de

un modelo totalmente independiente del sujeto permitiría potenciar el proceso de

despliegue inicial de cualquier herramienta tecnológica capaz de detectar cualquier

emoción mediante el aprendizaje automático. Este hecho puede concretarse en Bindi

para la detección de miedo en situaciones de Violencia de Género. Esta consideración

es esencial para entender algunas de las decisiones tomadas y los parámetros estudi-

ados en este capítulo y en los siguientes. Hay que tener en cuenta que este sistema

independiente del sujeto, que se despliega en un proceso de configuración inicial, está

sujeto a ser adaptado y personalizado posteriormente para el sujeto concreto para

mejorar su rendimiento, tal y como se indica en la Sección 3.1.7.2. Por otra parte, el
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proceso de diseño de todos los diferentes sistemas de reconocimiento de emociones

binarias de miedo presentados en esta investigación también estuvo sesgado por re-

stricciones específicas de recursos y capacidades integradas. Éstas se fijaron en 64 kB

de RAM y 512 kB de Flash. Hay que tener en cuenta que estos recursos fueron im-

puestos por el equipo de investigación para reducir el diseño a una implementación

ligera, sin embargo, se pueden establecer diferentes limitaciones teniendo en cuenta

la respectiva mejora o empeoramiento del rendimiento. En el capítulo 6 se ofrecen

detalles más específicos de la implementación integrada.

4.1 Clasificación del miedo usando DEAP
Como se detalla en la sección 3.2, la base de datos DEAP es una de las más

utilizadas en la literatura en cuanto a reconocimiento de emociones con señales

periféricas o fisiológicas. Aunque no es un conjunto de datos especializado en el

miedo, es decir, los diferentes estímulos fueron seleccionados desde una perspectiva

emocional general sin centrarse específicamente en ninguna emoción en particular,

contiene los elementos necesarios para que diseñemos la primera prueba de concepto

del sistema de detección de miedo basado exactamente en las mismas señales fisi-

ológicas de nuestro interés, es decir, PPG, GSR, y SKT. El DEAP contiene datos

de 32 participantes para un total de 40 videoclips, que se seleccionaron a partir de

una etapa de preetiquetado tras las valoraciones de arousal, valencia y dominancia.

Sin embargo, cabe destacar que el equipo de medición de esta base de datos fue

el sistema Biosemi ActiveTwo 1, que es un equipo de medición profesional pensado

para ser empleado en condiciones de laboratorio. Este hecho hace que las señales

adquiridas se alejen de las mediciones reales obtenidas con dispositivos wearables.

Así, los sistemas propuestos aquí sirven como prueba inicial de concepto y nos han

permitido identificar diferentes aspectos clave a tener en cuenta tanto a la hora de

diseñar una base de datos como de entrenar un modelo de aprendizaje automático

a partir de dichos datos.

En cuanto a la metodología específica seguida durante los experimentos DEAP, la

Figura 4-2 muestra un diagrama simplificado de la experimentación aplicada para

cada voluntario y cada estímulo. Obsérvese que la línea de base de 2 minutos se

1http://www.biosemi.com
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aplicó justo al principio del experimento. De esta figura se aprecia una transición

muy corta entre estímulos consecutivos y, por tanto, entre dos emociones elicitadas.

Este hecho puede afectar en gran medida al estado emocional de un voluntario, y por

tanto a la recuperación fisiológica, antes del siguiente videoclip. Además, se realizó

un descanso obligatorio a la mitad del experimento (estímulo número 20), durante

el cual se ofrecieron al voluntario galletas y bebidas sin cafeína ni alcohol. Esta

metodología experimental puede introducir un sesgo muy perjudicial en función del

orden de los estímulos y de la emoción a la que van dirigidos. En los siguientes

subapartados se analizan, desde el punto de vista fisiológico, los posibles efectos

detectados en los datos y etiquetas recogidas. Independientemente de estos hechos,

hasta donde yo sé, el DEAP fue la primera base de datos que propuso estímulos de

selección y metodología experimental de laboratorio bien documentados, junto con

un número relativamente alto de voluntarios, y lo hizo todo de acceso totalmente

abierto.

2-minute 

baseline

2-second 

display 

#trial

5-second 

baseline

1-minute

video

Self-

Assessment

Figure 4-2: Diagrama simplificado de la experimentación aplicada para cada volun-
tario y cada estímulo para la base de datos DEAP.

Antes de entrar en detalles sobre el análisis realizado y los sistemas diseñados uti-

lizando los datos del DEAP en este trabajo de investigación, se podría hacer una

revisión de las técnicas de procesamiento de datos y aprendizaje automático apli-

cadas por el trabajo original de la base de datos, y por las investigaciones posteriores

que la utilizan. Los autores del trabajo original de la base de datos DEAP aplicaron

procedimientos básicos de preprocesamiento para eliminar las derivas temporales de

baja frecuencia de algunas señales y suavizarlas utilizando filtros de media móvil.

Extrajeron 106 características fisiológicas y emplearon un método de selección de

características por filtro para utilizar sólo las de mayor rango. En concreto, aplicaron

la puntuación discriminante lineal de Fisher dada por la ecuación 4.1,

𝐽𝑓 = |𝜇1 − 𝜇2|
𝜎2

1 + 𝜎2
2

, (4.1)

donde 𝜇𝑘 y 𝜎𝑘 representan la media y la varianza de la clase 𝑘 para cada caracterís-
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tica 𝑓 . Obsérvese que esta ecuación es válida para 𝑘 = 2, es decir, un problema de

clasificación binaria. Cuanto mayor sea esta puntuación, más importante será esa

característica específica. Así, el objetivo es maximizar la puntuación para obtener

una gran varianza entre clases (numerador) y una pequeña varianza dentro de la

clase (denominador). Sin embargo, esta metodología no tiene en cuenta la combi-

nación de rasgos y tampoco maneja los redundantes, lo que conduce a un espacio de

rasgos seleccionados subóptimo con un umbral de discriminación empírico. Para la

clasificación, utilizaron un clasificador gaussiano de Bayes ingenuo para un problema

de dos clases y tres casos de uso diferentes, niveles bajos y altos de excitación, valen-

cia y agrado. Este clasificador específico se caracteriza por ser un modelo generativo,

es decir, tiene un sesgo alto y una varianza baja derivada de las distribuciones gaus-

sianas asumidas aprendidas de las características, lo que puede producir problemas

de infraajuste. El resultado de este clasificador considerando 𝑁 clases viene dado

por la ecuación 4.2,

𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑃 (𝑦)
𝑁∏︁

𝑖=1
𝑃 (𝑥𝑖|𝑦), (4.2)

donde podemos obtener la clase inferida 𝑦 para un conjunto dado de características o

vector de características 𝑥𝑖. Nótese que este clasificador hace dos supuestos clave al

considerar que las características son independientes y se distribuyen normalmente.

Siendo esta última dada por

𝑃 (𝑥𝑖|𝑦) = 1√︁
2𝜋𝜎2

𝑦

𝑒𝑥𝑝

⎛⎝− (𝑥𝑖 − 𝜇𝑦)2

2𝜎2
𝑦

⎞⎠, (4.3)

donde 𝜇𝑦 y 𝜎2
𝑦 son la media y la varianza de los valores en 𝑥 asociados a la clase 𝑖.

Por último, el CV aplicado fue LOTO considerando los 40 estímulos audiovisuales

utilizados durante los experimentos. Al emplear todas las señales periféricas, propor-

cionaron métricas promedio de Accuracy (ACC) y F1-score y obtuvieron un 57,00%

(ACC) y un 53,30% (F1-score) para el arousal, un 62,70% (ACC) y un 60,80% (F1-

score) para la valencia, y un 59,10% (ACC) y un 53,80% (F1-score) para el gusto.

Nótese que no proporcionaron las desviaciones estándar asociadas a dichos valores

medios.

Desde la publicación de la base de datos DEAP, se han propuesto en la liter-

atura diferentes sistemas de aprendizaje automático utilizando sus datos. Algunas
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publicaciones estudiaron la importancia de las características aplicando diferentes

métodos y mejorando dicho proceso. Por ejemplo, los autores de [182] consider-

aron el mismo problema de clasificación que los autores de DEAP, pero utilizaron

la eliminación recursiva de características para abordar la información mutua y re-

dundante. Aplicaron un clasificador SVM y obtuvieron un 66,36% (ACC) y un

63,99% (F1-score) para la excitación, y un 68,71% (ACC) y un 63,25% (F1-score)

para la valencia, lo que superó el trabajo original de DEAP. Utilizaron todas las

características de todas las modalidades, incluidas las extraídas de los sensores que

no se pueden llevar puestos. De hecho, concluyeron que las señales del electroence-

falograma desempeñaban un papel clave en la separación de clases (distinción entre

clases). Aunque su caso de uso no puede extrapolarse directamente al nuestro, ya

que sólo nos basamos en tres señales periféricas y hacia un sistema de detección bi-

naria del miedo. La mejora de los resultados en comparación con el trabajo original

debido a la aplicación de técnicas de selección de características menos restrictivas y

de un clasificador discriminativo es valiosa y puede ayudar en nuestra investigación.

También hay otras publicaciones que no consideraron todo el conjunto de señales

y, en cambio, redujeron su número hacia un concepto más apto para el uso. Por

ejemplo, [153] es uno de los últimos sistemas de reconocimiento de emociones basado

en DEAP. Los autores diseñaron un sistema de reconocimiento de emociones de cinco

clases (Feliz, Relajado, Asco, Triste, Neutral) utilizando el modelo PA. Aplicaron

una técnica de nivel de fusión de características aprovechando una arquitectura

de red de creencia profunda junto con la extracción de características estadísticas

convencionales sobre sólo tres señales fisiológicas (PPG, EDA y EMG). Por último,

entrenaron un clasificador SVM y obtuvieron hasta un 89,53% de precisión media

para un modelo independiente del sujeto siguiendo una configuración LOSO, que

superó el estado de la técnica. En su trabajo, no consideraron ninguna restricción

de implementación real relacionada con la segmentación de los datos, la resolución

de la frecuencia, el almacenamiento y la complejidad aplicada o necesaria. Además,

sólo tomaron los datos fisiológicos registrados durante los últimos 20 segundos de

cada estímulo basándose en su hipótesis de que la inmersión emocional era mayor al

final del videoclip. Esta hipótesis no se ha demostrado con un método estadístico,

objetivo y/o cuantificable, sino que sólo se ha evaluado mediante la exploración
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visual fisiológica.

Entre el resto de investigaciones realizadas sobre la base de datos DEAP y en

lo que respecta específicamente al caso de uso de reconocimiento de miedo, se en-

cuentran cuatro sistemas en la literatura. Por un lado, los dos primeros [181, 183]

son nuestras publicaciones y se detallan en los siguientes subapartados. En ade-

lante se denominarán DEAP-b1 y DEAP-b2 para este capítulo y los siguientes.

Por otro lado, los autores en [184] y en [185] emplearon el mismo paradigma de

miedo binario que se describe en la sección 2.3.4. En [184], utilizaron todos los

voluntarios DEAP y todas las señales fisiológicas disponibles, incluyendo las que

proporcionaban datos de electrooculograma y electroencefalograma. Realizando un

Design Space Exploration (DSE) para diferentes técnicas de selección de caracterís-

ticas, así como para nueve máquinas de clasificación diferentes, incluyendo las redes

neuronales profundas, lograron hasta un 90,07% de precisión media para un modelo

independiente del sujeto sin selección de características, sólo utilizando los datos

filtrados, y siguiendo una estrategia de Hold-Out con una proporción de división de

entrenamiento-prueba de 70/30. Nótese que [184] se publicó después de nuestro tra-

bajo de reconocimiento binario de emociones de miedo, DEAP-b1 [183], que, hasta

donde yo sé, fue la primera investigación que aplicó dicho paradigma de etiquetado

de miedo al reconocimiento de emociones a través de señales fisiológicas. En [185],

tomaron nuestra investigación de [181, 186] como referencia principal y elaboraron

un análisis exhaustivo que comprendía un estudio detallado de los efectos para el re-

conocimiento de la emoción binaria del miedo cuando se utilizan diferentes métodos

y técnicas de elementos de aprendizaje automático. A diferencia de la investigación

en [184], en ésta aplicaron etapas de filtrado, segmentación de datos con y sin sola-

pamiento, selección de características, reducción de la dimensionalidad y ajuste de

desequilibrios con Synthetic Minority Over-sampling TEchnique (SMOTE). Tam-

bién se basaron en los datos de los voluntarios del DEAP, pero descartaron la may-

oría de las señales y sólo emplearon GSR y PPG. Por último, utilizaron ventanas

de procesamiento de datos de 20 segundos y lograron una tasa máxima de precisión

en el reconocimiento del miedo de hasta el 93,50% para un clasificador SVM junto

con PCA considerando una estrategia de no solapamiento y 5 𝑘− 𝑓𝑜𝑙𝑑 CV. Aunque

esta última investigación es un valioso trabajo hacia la exploración de la amplia
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DSE respecto al reconocimiento del miedo, su principal limitación es la técnica CV

aplicada ya que podrían existir pliegues, es decir, ventanas de procesamiento, que

contengan parte de la información del pliegue anterior, ver Sección 3.1.7.3. Por lo

tanto, este hecho puede conducir a resultados demasiado optimistas.

4.1.1 Consideraciones sobre el equilibrio de los estímulos y

las etiquetas
Como se indica en la sección 3.1.1, uno de los enfoques comunes que se siguen

durante la generación de una base de datos está relacionado con la evaluación del

equilibrio de los estímulos. Esto se refiere a la representación estadística de las difer-

entes clases. Por ejemplo, en cualquier problema de clasificación es deseable tener

la misma cantidad de instancias para todas las clases. De lo contrario, el algoritmo

de clasificación podría derivar en favorecer el aprendizaje de la clase con mayor

representación frente al resto de las clases. Por ello, el análisis de las etiquetas du-

rante toda la generación y el procesamiento de la base de datos es fundamental para

contextualizar y comprender tanto la elicitación de emociones como los resultados

obtenidos.

En DEAP, los 40 videoclips utilizados durante el experimento se eligieron de un

conjunto de estímulos más amplio. Se inició una etapa de preetiquetado con 120

videoclips y se reunieron unas 14 valoraciones por vídeo. Tras este proceso y medi-

ante la ecuación 3.1, los autores seleccionaron los vídeos que se encontraban en las

esquinas extremas de los cuadrantes normalizados dentro del espacio PA, lo que dio

como resultado un conjunto de 40 videoclips con etiquetado extremo y utilizados

para provocar emociones en los voluntarios mientras se medía su señal fisiológica.

Tras visualizar estos videoclips, los voluntarios etiquetaron la emoción sentida por

ellos. Así, esta metodología condujo a la generación de dos conjuntos diferentes

de etiquetas, las de la etapa de preetiquetado y las autoinformadas y recordadas

durante el experimento. Por lo general, estas últimas son las preferidas para entre-

nar modelos de aprendizaje automático basados en los datos fisiológicos y/o físicos

recopilados. Sin embargo, la distribución de las etiquetas autodeclaradas puede

ser muy diferente con respecto a las etiquetas de la fase de preetiquetado. Por

ejemplo, en la figura 4-3 se muestran las diferencias entre las etiquetas previas al
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Figure 4-3: Diferencias de etiquetado para la base de datos DEAP y la numeración
original de los videoclips seleccionados.

etiquetado y las autodeclaradas para la base de datos DEAP y los videoclips se-

leccionados. En el caso de los estímulos preetiquetados, las etiquetas obtenidas se

clasifican con un símbolo diferente en función de la ubicación del cuadrante normal-

izado (Q1 -excitación positiva, valencia positiva-, Q2 -excitación positiva, valencia

negativa-, Q3 -excitación negativa, valencia negativa-, Q4 -excitación negativa, va-

lencia positiva-). Por el contrario, las etiquetas autoinformadas se representan con

el mismo símbolo y color. Obsérvese que los autores del DEAP seleccionaron los

estímulos que alcanzaron las medias más altas y las variaciones más pequeñas en-

tre las diferentes valoraciones. Como se puede observar, las valoraciones previas

al etiquetado no siguen la misma distribución que las valoraciones autodeclaradas,

lo que hace que incluso los mismos estímulos se sitúen en cuadrantes emocionales

diferentes, por ejemplo el estímulo 83.

La tabla 4.1 presenta los vídeos que se encuentran en un cuadrante diferente. Sin

tener en cuenta los que se encuentran en distintas ubicaciones dentro del mismo
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Table 4.1: vídeos que se encuentran en un cuadrante diferente con respecto al pree-
tiquetado frente a las etiquetas autodeclaradas.

Estímulo ID Cuadrante Pre-etiquetado Cuadrante Reportado
9 4 1
27 4 1
45 3 4
83 4 1
85 4 1
95 3 4
98 3 2
118 1 2

cuadrante y los que están justo en las líneas fronterizas, el 20% de los estímulos no

evocan la emoción objetivo o preetiquetada durante la realización de los experimen-

tos. Esto se traduce en una distribución de etiquetas distinta y, por tanto, puede

dar lugar a diferencias de rendimiento del sistema cuando se entrena con etiquetas

preetiquetadas o autoetiquetadas. Sin embargo, los estímulos relacionados con el

segundo cuadrante (Q2), basados en calificaciones de preetiquetado, son los únicos

que presentan una concordancia completa en comparación con las etiquetas autoin-

formadas. Así, se puede concluir que los estímulos que pretenden evocar emociones

negativas (alta excitación, valencia negativa), como las emociones relacionadas con

el miedo, son menos propensos a ser confundidos con otros cuadrantes. Aunque

esta conclusión apoya firmemente el enfoque de una estrategia de etiquetado basada

en el 2D a la hora de enfrentarse al desarrollo de un sistema de reconocimiento bi-

nario del miedo, también podría considerarse y explorarse la consideración de más

dimensiones.

Desde una perspectiva 3D y teniendo en cuenta el modelo PAD, las valoraciones

autodeclaradas y el mapeo de Miedo propuesto en la sección 2.3.4, sólo cinco estí-

mulos se sitúan dentro del cubo emocional relacionado con el miedo (51, 98, 111,

115), Figura 4-4. Este hecho es especialmente relevante debido al desentrañamiento

de los estímulos contenidos dentro de Q2 en la Figura 4-3. Así, desde el punto de

vista de la valoración subjetiva, la ampliación a una dimensión más (dominancia)

puede beneficiar la localización emocional de los estímulos y, por tanto, su poste-

rior asignación de etiquetas. Sin embargo, dicho beneficio se ve ensombrecido en

este caso concreto al saber que esos cinco estímulos representan sólo el 12,5% de

la cantidad total de videoclips. Esta última consideración representa una situación
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Figure 4-4: PAD para las etiquetas autodeclaradas por los voluntarios. El mapeo
del miedo propuesto en la sección 2.3.4 está marcado con un cubo de color.

muy desequilibrada en el caso de un sistema de reconocimiento binario de emociones

de miedo, pero puede mitigarse utilizando técnicas de sobremuestreo sobre la clase

minoritaria, como se explica en las siguientes subsecciones.

Para proporcionar una cuantificación específica de la distribución desequilibrada

autodeclarada, la tabla 4.2 muestra los ratios de desequilibrio autodeclarados para

cada tipo de etiqueta recogida. Por un lado, estos ratios de desequilibrio se calculan

sobre la base de un problema de dos clases, dividiendo cada dimensión en dos niveles

(alto y bajo), lo que equivale a lo que se hizo en la publicación original de DEAP. Por

otro lado, como la selección de estímulos en el DEAP se hizo exclusivamente en base

a la excitación y la valencia, el desequilibrio resultante para las otras dos valoraciones

reunidas (dominancia y agrado) es mayor. Por ejemplo, como esta base de datos

no se centró en la elicitación de emociones negativas, la proporción de desequilibrio

observada en la dominancia indica la presencia de más estímulos positivos en los que

los voluntarios valoraron un alto grado de control sobre la emoción evocada.

No obstante, en el caso de abordar el diseño de un sistema de reconocimiento bina-

rio de emociones de miedo, en el que se realiza una transformación binaria a partir
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Table 4.2: Ratios de desequilibrio reportados por las voluntarias y los voluntarios
para la base de datos DEAP.

Clase Baja:Alta Arousal Valencia Dominancia Liking
Ratio de Balanceo 1.4:1 1.2:1 1:1.6 2:1

de los espacios PA o PAD en lugar de dirigirse a la clasificación de múltiples nive-

les mediante modelos unidimensionales, los ratios de desequilibrio se detallan en la

Tabla 4.3. Estos ratios de desequilibrio deben contextualizarse en función del equi-

librio individual obtenido a través de las clasificaciones específicas autodeclaradas.

Por ejemplo, la Figura 4-5 muestra el balance de clases para cada voluntario después

de haber aplicado el mapeo binario de miedo de un espacio PA, que dio como re-

sultado "1" o la clase positiva para el Q2 (alta excitación y baja valencia) y "0" o la

clase negativa para el resto de los cuadrantes. Obsérvese que el umbral del 25% está

resaltado como marca de referencia que indica que, basándose en la verdad básica

original esperada por los investigadores, esta cantidad de estímulos debería evocar

una emoción situada en el Q2. Como puede observarse, 17 del total de voluntarios

(32) presentan menos del umbral esperado dentro de la clase positiva, lo que afecta

fuertemente al ratio de desequilibrio de este mapeo binario. Además, hay incluso

un voluntario (23) que no ha informado de ninguna valoración dentro de la clase

positiva. Estos hechos, además de explicar la elevada tasa de desequilibrio obtenida,

permiten comprender la complejidad de las diferencias interindividuales. No ob-

stante, los porcentajes medios de las clases considerando los 32 voluntarios son de

76,50% y 23,50% para las clases negativas y positivas respectivamente. Obsérvese

que el porcentaje medio de la clase positiva se acerca al 25% esperado. Este último

hecho apoya las conclusiones obtenidas con la Figura 4-3, por la que afirmábamos

que se puede abordar una estrategia de etiquetado basada en 2D para diseñar un

sistema de reconocimiento binario de emociones de miedo utilizando DEAP. Para el

mapeo binario aplicado al considerar un espacio PAD, la clase positiva está deter-

minada por la baja dominancia, el alto arousal y la baja valencia, mientras que la

negativa viene dada por las otras combinaciones posibles. La figura 4-6 muestra el

balance de clases por sujeto en tal caso. Nótese que en este gráfico no se espera que

se alcance un umbral, ya que la etapa de selección de estímulos previa al etiquetado

se basó únicamente en el arousal y la valencia. En este caso, hay tres voluntarios
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Table 4.3: Ratios de balanceo PA y PAD para la base de datos DEAP.
Clase NoMiedo:Miedo PA PAD

Ratio de balanceo 3.2:1 6.3:1

(23, 27, 28) que no mostraron ninguna valoración de clase positiva y los porcentajes

medios de clase son del 86,33% y del 13,67% para las clases negativas y positivas

respectivamente. Estos hechos explican claramente el mayor ratio de desequilibrio

con respecto a la binarización PA e indican que para esta base de datos el equilibrio

de la dimensión de dominancia no era crucial. Esto último es esencial para nuestro

caso de uso debido a la necesidad de distinguir entre emociones específicas que sólo

difieren en la dimensión de dominancia, como el miedo y la ira, tal y como se co-

mentó en el capítulo 2. No obstante, a pesar de este problema, se podría explorar

un sistema de reconocimiento de emociones binarias de miedo utilizando esta base

de datos como prueba de concepto. Además, como ya se ha señalado anteriormente,

se pueden aplicar diferentes técnicas de sobremuestreo para tratar estas condiciones

de desequilibrio extremo.
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Figure 4-5: Balance de clases por voluntario después de haber aplicado el mapeo
binario de miedo de un espacio PA.

Otro proceso esencial a la hora de evaluar la consistencia del etiquetado en los
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Figure 4-6: Balance de clases por voluntario después de haber aplicado el mapeo
binario de miedo de un espacio PAD.

diferentes voluntarios es observar las correlaciones interindividuales de las etique-

tas. Esta tarea proporciona información que puede relacionarse directamente con

los resultados obtenidos de los diferentes modelos de aprendizaje automático. Por

ejemplo, considerando los dos mapeos binarios de miedo realizados, es decir, de

PA y de PAD, los resultados obtenidos tras una prueba de Levene y una prueba

de Kruskal-Wallis rechazaron la hipótesis nula de que las varianzas son iguales en

todos los voluntarios (𝑝 < 0, 001). Obsérvese que ambos conjuntos de etiquetas

binarizadas presentan una distribución no normal y que el nivel de significación se

fijó en 𝑝 < 0, 05. Estos hechos conducen a la evaluación y aplicación de pruebas

de correlación e independencia para estudiar el comportamiento de etiquetado de

los distintos voluntarios. Así, la Figura 4-7a y la Figura 4-7b muestran los valores

𝑝 promediados para la correlación de Spearman y la prueba de Chi-cuadrado de

independencia para el mapeo basado en el miedo PA, respectivamente. Nótese que

ambos son métodos no paramétricos para evaluar las diferentes asociaciones entre

variables. Sin embargo, el primero responde a asociaciones monótonas, mientras que
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el segundo proporciona información relacionada con la independencia de las variables

considerando cualquier tipo de asociación. Los resultados arrojados por ambos pro-

cesos son cercanos, de hecho, ambos no rechazan la hipótesis nula. Esto indica que

no existe ninguna diferencia estadística entre los distintos grupos, es decir, la cor-

relación se considera no significativa y las distintas variables son independientes. Por

lo tanto, podemos concluir que no hay pruebas suficientes para sugerir que exista una

asociación entre la etiqueta binaria de los voluntarios. Además, algunos voluntarios

(4, 8, 16, 21, 26) muestran valores 𝑝 elevados en comparación con los demás, lo que

puede interpretarse como una mayor decorrelación e independencia de sus etiquetas.

Las figuras 4-8a y 4-8b presentan los valores 𝑝 promediados para el mapeo basado en

el miedo binario PAD y las mismas pruebas de correlación e independencia. En este

caso, podemos observar una mayor decorrelación e independencia para los distintos

voluntarios en comparación con las pruebas anteriores. Esto permite conocer la dis-

tribución del conjunto de datos de las etiquetas e incluso puede orientar el proceso

de diseño. Así, de la comparación de estas cifras y del estudio de consistencia de

las etiquetas se pueden extraer dos conclusiones principales (1) estos procesos per-

miten identificar a los voluntarios que proporcionaron un etiquetado muy distinto

durante los experimentos, y (2) aunque el espacio PAD proporciona más información

en términos de modelado emocional, cuantas más dimensiones se añaden, menor es

la concordancia que se puede obtener de las calificaciones autodeclaradas por los

voluntarios.
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Figure 4-7: Valores 𝑝 promediados para todos los voluntarios considerados y sus eti-
quetas aplicando: a) la correlación de Spearman, y b) para la prueba Chi-cuadrado
de independencia. En este caso, las etiquetas se binarizan utilizando el mapeo basado
en el miedo binario.
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Figure 4-8: Valores 𝑝 promediados para todos los voluntarios considerados y sus eti-
quetas aplicando: a) la correlación de Spearman, y b) para la prueba Chi-cuadrado
de independencia. En este caso, las etiquetas se binarizan utilizando el mapeo basado
en el miedo binario.

A pesar de las diferencias de equilibrio y concordancia observadas al aplicar la

transformación binaria de miedo de ambos modelos emocionales, el uso de la di-

mensión de dominancia para distinguir adecuadamente la emoción de miedo, nos

llevó a diseñar el DEAP-b1 utilizando la transformación binaria de miedo del espa-

cio PAD. Los resultados obtenidos con ese sistema, al considerar una perspectiva

independiente del sujeto, no fueron prometedores [183]. Por ello, decidimos simpli-

ficar el problema diseñando un sistema que utilizara un mapeo binario de miedo

del espacio PA, DEAP-b2. Este último mejoró los primeros resultados y demostró

que un sistema de reconocimiento binario de emociones relacionadas con el miedo

era factible utilizando únicamente información fisiológica. Los detalles específicos

de cada uno de estos sistemas se presentan en la sección 4.1.4. Además, hay que

tener en cuenta que los diferentes resultados recogidos en el estudio de equilibrio

de estímulos y consideración de etiquetas que se ofrece en esta sección estuvieron

siempre presentes durante el diseño de dichos sistemas.

4.1.2 Análisis exploratorio de datos y procesamiento de fil-

tros
Durante la generación de la base de datos del DEAP, los investigadores tuvieron

algunos problemas que afectaron a la adquisición de los sensores de algunos volun-

tarios y a la recuperación fisiológica diseñada. En esta sección, generamos diferentes
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gráficos sincronizados con la metodología experimental para realizar un análisis ex-

ploratorio de los datos y evaluar el comportamiento tanto desde el punto de vista

fisiológico como del funcionamiento del sensor. Por ejemplo, la Figura 4-9 mues-

tra un ejemplo de una de las representaciones gráficas para la evaluación visual

fisiológica realizada durante este paso. En concreto, los gráficos corresponden al ex-

perimento completo del voluntario número 22. Las señales representadas son GSR,

BVP, y SKT, de alto a bajo orden respectivamente. La señal de sincronización

indica los diferentes estados del experimento: 20 estímulos representados por cada

diente de sierra y 20 tareas de asignación de etiquetado en cada decadencia de los

mismos, a los que sigue una pausa y los 20 estímulos finales con su respectivo eti-

quetado. Cabe destacar que los datos mostrados se obtuvieron directamente de los

archivos ".bdf" (formato de datos de BioSemi generado por el software de grabación

Actiview) proporcionados por la base de datos. Nótese que también subieron una

versión preprocesada de los datos, sin embargo, sólo aplicando un down-sampling

sin ninguna otra etapa de filtrado adicional. Así, del análisis visual exploratorio de

los datos brutos de todos los participantes, obtuvimos tres conclusiones principales:

• Mientras que GSR y SKT mostraron una calidad aceptable, BVP necesitó ser

filtrado para eliminar no sólo los ruidos de alta frecuencia, sino también el

wander de la línea de base, es decir, la tendencia de muy baja frecuencia que

se produce por el efecto de la respiración en la adquisición de PPG.

• La expectativa de una pausa fisiológica no controlada (tras el estímulo 20), ex-

puesta durante el análisis de la metodología de la base de datos en la sección

4.1, se confirma a primera vista al menos por el GSR. Obsérvese el incremento

del nivel tónico durante la pausa y que este comportamiento se repite en todos

los voluntarios. Desde el punto de vista de una base de datos de laboratorio

en la que las condiciones deben estar debidamente controladas, este tipo de

recuperación puede dar lugar a efectos desconocidos para los sistemas de re-

conocimiento de emociones que se van a entrenar. Por lo tanto, en caso de

realizar una recuperación o pausa fisiológica, podrían aplicarse otras estrate-

gias que dieran cuenta de una estabilización o desviación real de las señales

fisiológicas.

• Se observaron incoherencias en la temperatura fisiológica de la piel en difer-
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entes voluntarios. Éstas se referían a valores de temperatura cutánea muy

bajos. Por ejemplo, la señal SKT de la Figura 4-9 presenta una variación de

29 ºC a 25 ºC, que no está dentro de los rangos SKT normales y/o válidos en

condiciones controladas de laboratorio. Este problema puede deberse a difer-

entes factores, como un mal funcionamiento de la adquisición del sensor o una

fijación incorrecta del mismo al cuerpo.
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Figure 4-9: Ejemplo de una de las representaciones gráficas de la evaluación visual
fisiológica realizada.

Para hacer frente a los diferentes problemas de ruido observados en el BVP, se

pueden diseñar diferentes filtros. Por un lado, el ruido de alta frecuencia puede

filtrarse mediante un filtro Finite Impulse Response (FIR) de paso bajo de forma

directa. Por otro lado, el efecto residual de la línea de base o de la deriva de

baja frecuencia que se presenta en la señal puede eliminarse mediante una etapa de

filtrado Butterworth Infinite Impulse Response (IIR) de paso bajo hacia delante y

hacia atrás. En concreto, la técnica forward-backwards maneja la fase no lineal de

dichos filtros. Por ejemplo, un ejemplo de la aplicación de estos diferentes procesos de

filtrado para un fragmento específico de la señal anterior se muestra en la Figura 4-10.

Cabe señalar que estas dos etapas de filtrado detallado pueden ser independientes,

es decir, no tienen que aplicarse estrictamente una tras otra. De hecho, sólo hemos

empleado el filtro FIR para DEAP-b1 y DEAP-b2. Esta consideración se basó en el

hecho de observar derivas de baja frecuencia dentro de la señal durante la extracción

de características. El filtro FIR diseñado dio como resultado una frecuencia de corte

de 3,5 Hz con una atenuación de -6 dB. Obsérvese que durante el proceso de diseño

se utilizó una ventana Hamming para minimizar adecuadamente el primer lóbulo
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Figure 4-10: Ejemplo de filtrado para la extracción y eliminación de la línea de base
mediante el filtrado IIR, y la eliminación del ruido alto.

En cuanto al problema de SKT con algunos de los voluntarios, 11 de 32 voluntarios

estaban afectados. Por lo tanto, sólo se consideraron 21 voluntarios válidos para el

DEAP-b1. Sin embargo, después, la necesidad de aumentar el conjunto de datos

llevó a considerar el conjunto completo de voluntarios para el DEAP-b2 a expensas

de omitir SKT y utilizar sólo GSR y BVP.

Como ya se destacó en el capítulo 3, la mayoría de las bases de datos de re-

conocimiento de emociones disponibles al público no realizan un análisis exploratorio

exhaustivo de los datos durante o después de la generación del conjunto de datos.

Este hecho puede dar lugar a comportamientos inesperados a la hora de diseñar

sistemas de reconocimiento de emociones. Por lo tanto, este paso es necesario para

garantizar la calidad de los datos proporcionados.

4.1.3 Extracción de características
El diseño de DEAP-b1 fue nuestro primer sistema de reconocimiento binario de

emociones de miedo [183], que siguió un enfoque de cálculo aproximado al no aplicar

ningún procedimiento de extracción de características, es decir, reducir la comple-
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jidad del sistema a cambio de disminuir la precisión [187]. En su lugar, solo se

consideró el valor filtrado de cada variable fisiológica. Este enfoque de fuerza bruta

es opuesto a otros enfoques, que emplearon más de cien características extraídas

de las señales fisiológicas, como el trabajo original de DEAP [138]. La decisión de

un sistema de extracción de características bare-metal de este tipo fue motivada

por una exploración inicial de las posibilidades de diseño al tratar directamente con

datos filtrados y/o crudos, y por los limitados recursos integrados que presentaba la

primera versión de Bindi (64KB de RAM). Nótese que otras publicaciones recientes,

como [184], también utilizaron directamente los datos en bruto para generar motores

de aprendizaje automático de miedo.

Al contrario que el DEAP-b1, nuestro segundo sistema de reconocimiento bina-

rio de miedo propuesto, el DEAP-b2 [181], implementó técnicas convencionales de

extracción de características usualmente empleadas en la literatura. Se extrajeron

utilizando toda la duración del clip de vídeo, es decir, ventanas de procesamiento

de 60 segundos. La tabla 4.4 presenta la lista completa de características para las

dos señales fisiológicas consideradas en este sistema. En las siguientes subsecciones

se ofrecen detalles específicos y la justificación de las características.

Es necesario aplicar diferentes procesos de delineación para obtener puntos fisiológi-

cos específicos para cada señal antes de extraer las características de las señales, como

se explica en la sección 2.5. Por ejemplo, la señal BVP requiere la identificación de

picos y valles. Para el sistema DEAP-b2, esto se hace implementando el mismo

algoritmo de delineación BVP que se propone en [148]. Para la señal GSR hay que

extraer también los componentes tónico y fásico, SCL y SCR. En este caso, asum-

imos una combinación lineal de estos dos componentes representada en la ecuación

2.7. La tendencia de la señal GSR se obtiene mediante un filtro de mediana móvil

con una ventana deslizante de +/− cuatro segundos, que se basa en sustituir cada

entrada por la mediana de las entradas vecinas para dicha ventana. Después, la

tendencia se resta directamente a la señal GSR, lo que da el componente SCR.

4.1.3.1 Dominio Temporal

Las características del dominio del tiempo pueden dividirse en dos grupos princi-

pales: estadísticas de orden superior y características morfológicas.

Dentro del primer grupo, el bloque principal es el cálculo del promedio de la señal
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Table 4.4: Características extraídas del sistema DEAP-b2.
Sensor Domain Features

PPG/BVP Time-domain: Average of filtered signal
(13) (3) Mean of Inter-Beat-Interval

Heart Rate Variability
Frequency-domain: Power spectral density of four bands

(5) (0–0.1 Hz, 0.1–0.2 Hz, 0.2–0.3 Hz and 0.3–0.4 Hz)
Inter-Beat-Interval spectral density ratio between

0–0.08 Hz and 0.15–0.5 Hz bands
Non-linear domain: Inter-Beat-Interval Multi Scale Entropy

(5) (five levels)
GSR Time-domain: Average of filtered signal
(7) (7) Number of ERSCR peaks per second

Average relative amplitude of ERSCR peaks per second
Average rise time of ERSCR peaks per second

Standard deviation of filtered signal
25th percentile value
75th percentile value

dentro de una ventana de procesamiento, en la que se adquieren un total de 𝑁

muestras a una frecuencia de muestreo específica 𝑓𝑠. El promedio sigue

𝜇𝑋 = 1
𝑁

𝑁∑︁
𝑛=1

𝑋𝑛, (4.4)

donde 𝑋 representa las señales BVP o GSR. Para el caso de la BVP, el valor

medio está relacionado con la resistencia periférica, que es responsable del tono

vascular, como se indica en el capítulo 2. Además, cuando no se aplica el método

de eliminación de la línea de base, esta información se mezcla con los efectos de la

amplitud de la respiración, que pueden afectar a las partes de CC y de muy baja

frecuencia de la señal (ecuación 2.6). Para el caso GSR, el promedio de la señal

contiene información de la parte estacionaria del nivel tónico de la señal o SCL. Por

lo tanto, está fuertemente relacionado con la cuantificación del arousal. Para tener

en cuenta la variabilidad de dicha información, también se considera la desviación

estándar del GSR dada por la raíz cuadrada de la varianza, ecuación 4.5

𝑠𝑋 =

⎯⎸⎸⎷ 1
𝑁 − 1

𝑁∑︁
𝑛=1
|𝑋𝑛 − 𝜇𝑋 |2. (4.5)

Por último, los restantes procedimientos estadísticos de orden superior son los cuar-

tiles 25 y 75 de los elementos de procesamiento de la ventana actual. Estos también
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se aplican únicamente a la señal GSR y se obtienen mediante un algoritmo basado

en la ordenación.

En cuanto a los rasgos morfológicos, se caracterizan por la identificación de los

puntos fisiológicos de delineación dentro de la ventana de procesamiento actual. La

señal BVP se somete a la extracción de dos rasgos morfológicos: la media y la

variabilidad del IBI. Esta métrica es la diferencia temporal entre los diferentes picos

sistólicos identificados. Su media y variabilidad están relacionadas con la respuesta

del ANS. En concreto, indican los cambios de la variabilidad cardíaca en respuesta a

factores de estrés agudos (vídeos). Obsérvese que esta información permite rastrear

la respuesta del sistema cardiovascular, y esta variabilidad se espera de una persona

sana. Por el contrario, podría ocurrir que para personas con una condición de estrés

crónico, como el PTSD, presente una variabilidad mínima o nula. La serie temporal

del IBI viene dada por la ecuación 4.6

𝐼𝐵𝐼𝑛 = 𝑡𝑠𝑦𝑠𝑛+1 − 𝑡𝑠𝑦𝑠𝑛
, (4.6)

donde 𝑡𝑠𝑦𝑠𝑛+1 y 𝑡𝑠𝑦𝑠𝑛
son las posiciones temporales de los picos sistólicos 𝑛 + 1 y 𝑛,

respectivamente. Suele expresarse en milisegundos y oscila entre 1000 ms y 600 ms

(60-100 BPM) cuando está en condiciones de reposo. La variabilidad del IBI o

Heart Rate Variability (HRV) se calcula como la desviación estándar de los IBI

recogidos a lo largo de la ventana de procesamiento, que también se conoce como

SDNN. Nótese que ésta es una de las diferentes opciones posibles para calcular el

HRV. Cuando se trata de la señal GSR, el número, la amplitud y el tiempo de

subida de los diferentes picos ERSCR se extraen utilizando el componente SCR

obtenido tras la sustracción de la tendencia. Por lo tanto, para extraer estas tres

características, se ejecuta un método de trough-to-peak sobre el SCR. Para esta

implementación, asumimos que el criterio de amplitud normalmente aceptado para

discernir ERSCRs sobre un estímulo externo es 0.01 microS [112]. Nótese que estas

tres características se expresan en 𝜇𝑆/𝑠𝑒𝑔, es decir, se calculan y normalizan por el

tiempo de procesamiento de la ventana, en este caso la duración del vídeo.

Aunque las características basadas en el dominio del tiempo no pueden tratar la in-

formación fisiológica no estacionaria, proporcionan un punto de partida fuertemente

respaldado y validado para cualquier sistema de reconocimiento de emociones.
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4.1.3.2 Dominio Frequencial

Antes de abordar cualquier extracción de información en frecuencia, la resolución

en frecuencia debe ajustarse en consecuencia para poder obtener todas las bandas de

densidad espectral de potencia (PSD) establecidas. De hecho, dicha resolución sólo

depende de la longitud temporal de la ventana de procesamiento. Por ejemplo, en

este caso, un tamaño de ventana de 60 segundos da como resultado una resolución

de frecuencia de 0,016 Hz/bin dada por la ecuación 4.7

𝑓𝑟𝑒𝑠 = 𝑓𝑠

𝑓𝑠 * 𝑇𝑙𝑒𝑛

= 1
𝑇𝑙𝑒𝑛

, (4.7)

donde 𝑇𝑙𝑒𝑛 es el tamaño de la ventana en segundos, 𝑓𝑠 es la frecuencia de muestreo de

la señal discreta, y 𝑓𝑟𝑒𝑠 es la resolución de frecuencia en 𝐻𝑧/𝑏𝑖𝑛. Obsérvese que esta

última se refiere a la diferencia de frecuencia entre cada bin, es decir, los resultados o

bins de un algoritmo FFT indican la respuesta de la magnitud de la frecuencia para

frecuencias centradas específicas separadas por 𝑓𝑟𝑒𝑠, Figura 4-11. En nuestro caso,

el primer bin de frecuencias está centrado en 0,016 Hz, el segundo está centrado en

0,033 Hz, y así se hace para los siguientes bins consecutivos. Así, teniendo en cuenta

que la banda de PSD más baja a extraer está limitada de 0 a 0,1 Hz para la señal

de BVP, el uso de esta longitud de ventana temporal es suficiente para tratar todas

las bandas de PSD necesarias y obtener una separación adecuada entre ellas.

Frequency𝑓𝑟𝑒𝑠

1 2 … 𝑘

𝑘
1

𝑇

Figure 4-11: Ilustración de la resolución de la frecuencia y ubicación de los bines de
frecuencia basados en una ventana de procesamiento de 𝑇 segundos.

Las características en el dominio de la frecuencia para el DEAP-b2 sólo se contem-

plaron utilizando la señal BVP. Se extrajeron cuatro bandas de baja frecuencia PSD

de la señal filtrada junto con la relación PSD de la contribución de baja frecuencia

y la de alta frecuencia de los IBIs extraídos. Por un lado, las cuatro bandas de baja

frecuencia van de 0 a 0,4 Hz en pasos de 0,1 Hz. Esto permite recoger información

sobre los componentes de baja frecuencia dentro del BVP, es decir, principalmente

los efectos respiratorios. Por otro lado, la relación PSD de las bandas de baja y
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alta frecuencia para los IBI extraídos se basa en la activación simpática y parasim-

pática. Por ejemplo, en el caso de que la varianza de IBI observada fuera muy baja,

la actividad cardíaca sería estable o constante, lo que desde el punto de vista fre-

cuencial implica que las bandas de muy baja frecuencia tienen más potencia que las

de alta frecuencia. Hay que tener en cuenta que este estado fisiológico podría ser

desencadenado por factores de estrés agudos, es decir, en nuestro caso las emociones

negativas que conducen a la activación simpática. Sin embargo, cuando se está en

condiciones de reposo, la varianza del IBI será alta, lo que conduce a la activación

de las bandas de alta frecuencia. Esto se representa en la Figura 4-12, que muestra

una representación y relación ideal entre las partes de baja frecuencia (LF) y de alta

frecuencia (HF) del IBI PSD, dada por la Task Force de la Sociedad Europea de

Cardiología [8]. Como se puede observar, aunque la parte de HF ocupa un mayor

rango espectral en comparación con la parte de LF, se obtiene un incremento evi-

dente en LF al no estar en condiciones de reposo y normalizar ambos factores. Hay

que tener en cuenta que se pueden dividir en más bandas internas, proporcionando

información relativa a las frecuencias ultrabaja, muy baja, muy alta y ultraalta. En

este caso, utilizamos una distinción gruesa agrupándolas en dos bandas principales:

de 0 a 0,08 Hz para LF y de 0,15 a 0,5 Hz para HF.

The problem of ‘stationarity’ is frequently dis-
cussed with long-term recordings. If mechanisms
responsible for heart period modulations of a certain
frequency remain unchanged during the whole period of
recording, the corresponding frequency component of
HRV may be used as a measure of these modulations. If
the modulations are not stable, interpretation of the
results of frequency analysis is less well defined. In
particular, physiological mechanisms of heart period
modulations responsible for LF and HF power compo-
nents cannot be considered stationary during the 24-h
period[25]. Thus, spectral analysis performed in the entire
24-h period as well as spectral results obtained from
shorter segments (e.g. 5 min) averaged over the entire
24-h period (the LF and HF results of these two
computations are not different[26,27]) provide averages of
the modulations attributable to the LF and HF compo-
nents (Fig. 4). Such averages obscure detailed informa-
tion about autonomic modulation of RR intervals
available in shorter recordings[25]. It should be remem-
bered that the components of HRV provide measure-
ments of the degree of autonomic modulations rather

than of the level of autonomic tone[28] and averages of
modulations do not represent an averaged level of tone.

Technical requirements and recommendations
Because of the important differences in the interpreta-
tion of the results, the spectral analyses of short- and
long-term electrocardiograms should always be strictly
distinguished, as reported in Table 2.

The analysed ECG signal should satisfy several
requirements in order to obtain a reliable spectral esti-
mation. Any departure from the following requirements
may lead to unreproducible results that are difficult to
interpret.

In order to attribute individual spectral compo-
nents to well defined physiological mechanisms, such
mechanisms modulating the heart rate should not
change during the recording. Transient physiological
phenomena may perhaps be analysed by specific meth-
ods which currently constitute a challenging research
topic, but which are not yet ready to be used in applied
research. To check the stability of the signal in terms of
certain spectral components, traditional statistical tests
may be employed[29].

The sampling rate has to be properly chosen. A
low sampling rate may produce a jitter in the estimation
of the R wave fiducial point which alters the spectrum
considerably. The optimal range is 250–500 Mz or per-
haps even higher[30], while a lower sampling rate (in any
case §100 Hz) may behave satisfactorily only if an
algorithm of interpolation (e.g. parabolic) is used to
refine the R wave fiducial point[31,32].

Baseline and trend removal (if used) may affect
the lower components in the spectrum. It is advisable to
check the frequency response of the filter or the behav-
iour of the regression algorithm and to verify that the
spectral components of interest are not significantly
affected.
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12) of RR interval variability in a healthy subject at rest
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nents, which express the alteration of spectral components
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Figure 4-12: Representación ideal y relación entre las partes de baja frecuencia (LF)
y de alta frecuencia (HF) de la IBI PSD [8].

La PSD se calculó utilizando el estimador de promedio de segmentos superpuestos

de Welch. Hay que tener en cuenta que la resolución de frecuencia para la IBI no

es la misma que para la señal BVP filtrada, ya que la IBI es una señal muestreada

o adquirida de forma irregular. Esto implica que para una ventana temporal fija,

el número de IBIs recogidos puede no ser el mismo para diferentes ventanas de
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procesamiento. Por ejemplo, considerando una ventana de procesamiento fija de 60

segundos, un 40 BPM estable llevaría a una resolución de frecuencia de 0,025 Hz/bin,

mientras que un 100 BPM estable llegaría hasta 0,01 Hz/bin. Obsérvese que el peor

escenario será la frecuencia cardíaca más baja. Para mantener una resolución de

frecuencia fija independientemente de la variabilidad de las BPMs, los puntos de IBI

obtenidos se interpolan y remuestrean a 8 Hz, con lo que se consigue 0,031 Hz/bin.

Esto último es suficiente para tratar todas las bandas de PSD necesarias y obtener

una separación adecuada entre ellas.

4.1.3.3 Dominio No-lineal

El último conjunto de características a extraer se basa en información no lineal. En

el caso del sistema DEAP-b2, éstas se aplican únicamente a la señal IBI extraída.

Así como la información proporcionada por la señal GSR está más directamente

relacionada con la activación SNS debida a las glándulas sudoríparas ecrinas, la

información obtenida de la señal BVP puede presentar una amplia gama de com-

portamientos que se producen por diferentes combinaciones o no linealidades fisi-

ológicas (SNS y PNS) y físicas. Éstas pueden identificarse como factores vasculares

o hemodinámicos que se modifican por factores estresantes externos o incluso por

la homeostasis hacia la termorregulación en diferentes condiciones físicas. Así pues,

las características no lineales pueden aportar información que los métodos lineales

pierden. De hecho, la superioridad de los métodos no lineales cuando se aplican al

reconocimiento de emociones utilizando información fisiológica es un tema candente

en la actualidad [188].

Se sabe que el comportamiento fisiológico no lineal puede verse en diferentes escalas

de tiempo, como los ritmos circadianos. Por lo tanto, para este sistema utilizamos la

Multi-Scale Entropy (MSE) introducida en [189] para considerar el aspecto no lineal

de la serie temporal IBI y una dependencia de la escala temporal. Esta métrica

amplía la entropía de la muestra a diferentes escalas temporales para proporcionar

una perspectiva adicional cuando la escala temporal de relevancia es desconocida,

como es nuestro caso. Todos los cálculos se basan en la entropía estadística dada

por la ecuación 4.8

𝐻(𝑋) = −
∑︁

𝑖

𝑝(𝑋𝑖)𝑙𝑜𝑔(𝑝(𝑋𝑖)), (4.8)

donde 𝑝(𝑋𝑖) es la función de masa de probabilidad para el bloque de datos 𝑖. Ob-
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sérvese que se trata de una medida de la incertidumbre media de la señal analizada,

es decir, una serie temporal con fluctuaciones no periódicas generará valores más

altos que una señal sinusoidal pura (no caótica). Así, el cálculo de la entropía de la

muestra comienza segmentando la serie temporal de 𝑁 puntos por una dimensión

de incrustación 𝑚, donde 𝑚 < 𝑁 . Esto lleva a 𝑁 − 𝑚 + 1 tales segmentos. A

continuación, se calcula la distancia 𝑑 entre los distintos puntos m-dimensionales y

se compara con un umbral predefinido 𝑟. En caso de que 𝑑 < 𝑟, los dos segmen-

tos se consideran similares y se almacena una clasificación positiva de "1" 𝑚, de

lo contrario se anota una clasificación nula de "0". Esto se hace igualmente para

𝑚 + 1. Finalmente, los resultados se expresan mediante las matrices: expresadas en

las ecuaciones 4.9 y 4.10

𝐴(𝑚, 𝑟) = 1
𝑁 −𝑚

𝑁−𝑚∑︁
𝑖=1

Θ(𝑟 − 𝑑𝑖), (4.9)

𝐵(𝑚 + 1, 𝑟) = 1
𝑁 −𝑚 + 1

𝑁−𝑚∑︁
𝑖=1

Θ(𝑟 − 𝑑𝑖+1), (4.10)

que se utilizan para proporcionar la entropía final de la muestra expresada en la

ecuación 4.11

𝑆𝑎𝑚𝑝𝐸𝑛(𝑋) = − log
(︃

𝐴(𝑚, 𝑟)
𝐵(𝑚 + 1, 𝑟)

)︃
. (4.11)

La extensión que MSE introduce dentro de la entropía de la muestra es el grano

grueso o el muestreo descendente de la serie temporal en diferentes escalas de tiempo.

Así, en cada nivel (escala temporal), la serie temporal de grano grueso se obtiene

promediando los respectivos puntos de la serie temporal. Esto se ilustra en la figura

4-13 y se expresa matemáticamente mediante la ecuación

𝑦𝜏
𝑗 = 1

𝜏

𝑗𝜏∑︁
𝑖=(𝑗−1)𝜏

𝑥𝑖, 1 ≤ 𝑗 ≤ 𝑁𝜏, (4.12)

donde 𝜏 es la escala de tiempo o nivel. Por último, se calcula la entropía de la

muestra sobre los 𝑦𝜏
𝑗 obtenidos. En nuestro análisis, empleamos un MSE de cinco

niveles (𝜏 = 5), fijamos 𝑚 = 2, y 𝑟 = 0, 2𝜎, donde 𝜎 es la desviación estándar de

la serie temporal IBI. Obsérvese que estos parámetros se eligieron basándose en

trabajos anteriores en la literatura que tratan sobre el reconocimiento de emociones
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y este tipo de características no lineales [190].

…

Time scale 1:    𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 … 𝑥𝑁−1 𝑥𝑁

𝑦1 𝑦2 𝑦3 𝑦4 … 𝑦𝑁

Time scale 2:    𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 … 𝑥𝑁−2 𝑥𝑁−1 𝑥𝑁

𝑦1 𝑦2 𝑦3 … 𝑦𝑁

Time scale 5:    𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12 … 𝑥𝑁−2 𝑥𝑁−1 𝑥𝑁

𝑦1 𝑦2 … 𝑦𝑁
Figure 4-13: Cada serie temporal de grano grueso obtenida para cada nivel de la
técnica o algoritmo de extracción de características MSE.

4.1.4 Sistemas de clasificación del miedo
En los siguientes apartados se detallan y explican los resultados obtenidos con los

sistemas DEAP-b1 y DEAP-b2. Obsérvese que todas las especificaciones relativas

a la transformación del mapa de etiquetado, el análisis exploratorio de datos, el

procesamiento de datos y la extracción de características ya se han detallado en las

secciones anteriores de este capítulo.

4.1.4.1 Sistema DEAP-b1

Este sistema [183] fue, hasta donde yo sé, el primero en la literatura en proponer

y validar el mapeo binario específico del miedo utilizando el espacio PAD y sólo

tres variables fisiológicas. Como ya se ha dicho en apartados anteriores, sólo se

emplearon 21 de los 32 voluntarios del DEAP, y no se aplicó ninguna extracción

de características como tal, sino que se consideró el valor filtrado de cada variable

fisiológica. Cada voluntario fue sometido a un escalado de 0 − 1 para el conjunto

completo de valores fisiológicos recogidos durante el experimento. Para la clasifi-

cación, de cara a una primera prueba de concepto de implementación embebida del

sistema, consideramos un algoritmo perezoso, concretamente, un KNN. Tenga en

cuenta que el valor de 𝑘 se fijó a la raíz cuadrada del tamaño del conjunto de en-

trenamiento, que es una práctica comúnmente aplicada. Para simplificar el cálculo,

se considera la distancia euclidiana para comparar dos muestras. Para ser justos en
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esta comparación y evitar los problemas relacionados con los valores en diferentes

unidades y escalas, cada uno de los tres valores de una muestra se normaliza como se

ha indicado anteriormente (escala de 0− 1). Por último, para la validación, imple-

mentamos una estrategia de Hold-Out CV y realizamos un barrido experimental de

parámetros para la relación de Hold-Out. Además, para hacer frente a la situación

de fuerte desequilibrio en el etiquetado, decidimos aplicar el aprendizaje sensible

a los costes mediante el ajuste de un parámetro de coste de clasificación errónea.

Esta práctica se utiliza habitualmente en los problemas de clasificación binaria de

desequilibrio. En este caso, dicho parámetro define una penalización que da más

importancia (peso) a los falsos negativos producidos. Por lo tanto, el uso de esta

penalización es útil para reducir la tasa de falsos negativos en nuestro sistema, que es

fundamental para la aplicación de la violencia de género. Por ejemplo, al considerar

a Bindi, el brazalete se encuentra en realidad en la parte inferior de una cascada de

dispositivos más potentes, por lo que este dispositivo wearable restringido podría

actuar como disparador para ejecutar algoritmos más complejos en capas superiores

si fuera necesario. De ahí que sea esencial reducir el número de falsos negativos en

este primer paso, aunque penalice la precisión.

Como primer paso en la evaluación de DEAP-b1, nos centramos en los datos de

un voluntario arbitrario, el número 18 (𝑝18). Para este voluntario concreto, hay un

total de 256.358 muestras o instancias de cada variable fisiológica recogidas durante

todo el experimento (40 clips). El algoritmo KNN se entrena utilizando diferentes

valores de Hold-Out y costes de clasificación errónea. Para cada combinación de

Hold-Out y miss-classification, se generan aleatoriamente 30 sistemas de inteligen-

cia independientes para tener validez estadística en los resultados obtenidos. Se

analizan y comparan diferentes métricas como la precisión, la especificidad (o tasa

de verdaderos negativos), la sensibilidad (o tasa de verdaderos positivos) y la media

geométrica entre la sensibilidad y la especificidad. Cabe mencionar que el uso de la

memoria se ve fuertemente afectado por la proporción de Hold-Out, ya que es nece-

sario almacenar el espacio de entrenamiento completo para procesar más muestras y

proporcionar futuras inferencias. Así, el espacio de diseño para el ratio de Hold-Out

va de 0,7 a 0,9999, lo que lleva a un tamaño del conjunto de entrenamiento del 30%

al 0,01%.
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Figure 4-14: Exactitud frente al coste de la clasificación errónea para 𝑝18.

La figura 4-14 muestra la precisión frente al coste de la clasificación errónea para

los diferentes valores de Hold-Out en 𝑝18. Analizando esta figura, comprobamos

que i) la precisión es mejor para valores más bajos de Hold-Out (el conjunto de

entrenamiento es mayor y entonces, el sistema está mejor caracterizado) y ii) la

precisión suele disminuir a medida que aumenta la penalización por clasificación

errónea (el número de falsos negativos se reduce, pero también aumenta el número

de falsos positivos). La figura 4-15 muestra la sensibilidad frente al coste de la

clasificación errónea para los diferentes valores de Hold-Out en 𝑝18. Analizando

esta figura, comprobamos que la sensibilidad aumenta con el coste de la clasificación

errónea en función del mecanismo de esta penalización. La figura 4-16 muestra la

especificidad frente al coste de la clasificación errónea para los diferentes valores

de Hold-Out en 𝑝18. En esta figura, la especificidad disminuye con el coste de

clasificación errónea basado en esta penalización. Nótese que la leyenda de las dos

últimas figuras es la misma que la primera.

Aplicando este análisis al resto de los voluntarios y observando comportamientos

similares, determinamos que un coste de clasificación errónea de 8 unidades puede

ser adecuado para el conjunto de datos actual. Sin embargo, en el caso de la relación

Hold-Out, esta decisión no es inmediata ni se basa puramente en el rendimiento, ya

que es necesario estudiar el impacto en la memoria y el cálculo de este parámetro.

Así, la Tabla 4.5 muestra, para cada valor de Hold-Out para el voluntario 𝑝18, el

tamaño del conjunto de entrenamiento, la memoria necesaria considerando dicha

asignación del conjunto de entrenamiento y la memoria consumida por el algoritmo
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Figure 4-15: Sensibilidad frente al coste de la clasificación errónea para 𝑝18.

Figure 4-16: Especificidad frente al coste de la clasificación errónea para 𝑝18.

KNN, así como una estimación del número de operaciones. Nótese que la memoria

utilizada en KB se basa en un tipo de datos enteros de 32 bits, y el número de op-

eraciones se basa en la complejidad computacional media del método de ordenación

rápida que suele encontrarse en las implementaciones de KNN. Esta complejidad

es 𝒪(𝑛 log 𝑛), donde 𝑛 es el número de elementos a ordenar, es decir, el tamaño

del conjunto de datos de entrenamiento. Analizando esta tabla, comprobamos que

el valor de Hold-Out tiene un impacto importante en la memoria utilizada y en el

número de operaciones a computar. De hecho, pasar de 0,999 a 0,99 conlleva más

de 13 veces más operaciones. Estos aspectos son críticos para un sistema de edge-

computing como Bindi. En consecuencia, después de analizar las tendencias en las
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Hold-Out tamaño entrenamiento memoria usada (kB) operaciones

0.7 76907 976.36 375767
0.8 51272 650.91 241483
0.9 25636 325.45 113024
0.99 2564 32.54 8739
0.999 256 3.25 618
0.9999 26 0.32 36

Table 4.5: Impacto del tamaño del conjunto de entrenamiento en la memoria y el
cálculo para 𝑝18. Enfoque dependiente del sujeto.

figuras 4-14, 4-15 y 4-16, el valor de Hold-Out se fija en 0,99.

Sobre la base de los valores definidos anteriormente para el coste de retención y

de clasificación errónea, la tabla 4.6 muestra las métricas de precisión, sensibilidad,

especificidad y media geométrica para todos los voluntarios considerados en el con-

junto de datos. Obsérvese que todos los voluntarios tienen un tamaño comparable

a 𝑝18, por lo que fijamos el mismo valor de Hold-Out. En este caso, también se han

entrenado 30 sistemas independientes para que cada modelo tenga validez estadís-

tica. Analizando esta tabla, comprobamos que, por término medio, la precisión, la

sensibilidad, la especificidad y la media geométrica fueron de 0,85, 0,99, 0,81 y 0,81

respectivamente. Obsérvese que la media más alta y la varianza más baja de la sen-

sibilidad en comparación con las demás métricas se debe al coste de la clasificación

errónea, es decir, el sistema está más sesgado hacia la clase positiva.

En caso de considerar un enfoque independiente del sujeto y aplicar el mismo coste

de clasificación errónea, el Hold-Out podría reevaluarse en términos de consumo de

memoria. Así, la tabla 4.7 muestra, para cada valor de Hold-Out, el tamaño del

conjunto de entrenamiento al mezclar los datos de todos los voluntarios considerados

en el conjunto de datos, la memoria utilizada en kB se basa en un tipo de datos

enteros de 32 bits, y el número de operaciones sigue el mismo enfoque de cálculo que

para el caso dependiente del sujeto. Analizando esta tabla, comprobamos que, para

este sistema, un valor de Hold-Out igual a 0,999 es comparable a un valor de 0,99

para el caso dependiente del sujeto en la Tabla 4.5, es decir, necesitamos reducir el

ratio de Hold-Out para conseguir un número similar de puntos en el conjunto de

datos de entrenamiento. La tabla 4.8 muestra las métricas de precisión, sensibilidad,

especificidad y media geométrica para el caso independiente del sujeto asumiendo

diferentes valores de Hold-Out y considerando el coste de clasificación errónea de 8

de antes. En concreto, las métricas obtenidas para el Hold-Out de 0,999 son signi-
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Precisión Sensibilidad Especificidad Media Geométrica Voluntarios/as

0.71 0.97 0.67 0.81 𝑝1
0.93 1.00 0.85 0.92 𝑝2
0.80 0.97 0.77 0.86 𝑝3
0.79 0.97 0.85 0.90 𝑝4
0.96 0.97 0.97 0.97 𝑝5
0.91 0.99 0.94 0.96 𝑝6
0.99 1.00 0.97 0.98 𝑝7
0.86 0.97 0.89 0.92 𝑝8
0.86 1.00 0.80 0.89 𝑝9
0.83 0.98 0.88 0.92 𝑝10
0.94 1.00 0.87 0.93 𝑝11
0.69 1.00 0.52 0.72 𝑝12
0.84 1.00 0.73 0.85 𝑝13
0.76 0.99 0.70 0.83 𝑝14
0.79 1.00 0.66 0.81 𝑝15
0.71 0.99 0.74 0.85 𝑝16
0.87 1.00 0.86 0.92 𝑝17
0.93 1.00 0.94 0.96 𝑝18
0.82 0.99 0.79 0.88 𝑝19
0.84 1.00 0.81 0.90 𝑝20
0.77 0.99 0.74 0.85 𝑝21

0.84 (0.08) 0.99 (0.01) 0.81 (0.11) 0.88 (0.06) 𝜇(𝜎)
Table 4.6: Métricas de precisión, sensibilidad, especificidad y media geométrica para
cada voluntario asumiendo un coste de retención y de clasificación errónea de 0,99
y 8, respectivamente. Enfoque dependiente del sujeto.

ficativamente inferiores a las del caso dependiente del sujeto. Además, comprobamos

que las tres métricas mejoran al considerar valores más bajos de holdout, como para

el caso dependiente del sujeto. Sin embargo, su alto impacto en la complejidad es-

pacial y temporal hace que su implementación en dispositivos de borde restringido

no sea factible.

Por lo tanto, basándonos en estos experimentos, podemos concluir que una imple-

mentación dependiente del sujeto puede mejorar significativamente el rendimiento

de la inferencia del estado emocional en un dispositivo wearable de tamaño reducido.

En concreto, el enfoque dependiente del sujeto proporciona hasta 0,84, 0,99, 0,81 y

0,88 de precisión, sensibilidad, especificidad y media geométrica de media, mientras

que el enfoque independiente del sujeto proporciona hasta 0,54, 0,88, 0,47 y 0,62,

para las configuraciones elegidas. Para este último enfoque, en el caso de Bindi,

que pretende proporcionar un motor de aprendizaje automático del miedo para ser
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desplegado en la vida real, la sensibilidad debería ser cercana a 1,00 para maximizar

la detección de verdaderos positivos, como ocurre con el enfoque dependiente del

sujeto.

A pesar de la evidencia de los resultados, la estrategia Hold-Out utilizada para am-

bos modelos, dependiente e independiente del sujeto, puede conducir a resultados

demasiado optimistas. Esto se debe a que las entradas del sistema son los valores

fisiológicos filtrados y el Hold-Out aplicado no tuvo en cuenta si pertenecen al mismo

vídeo. Así, los procesos de entrenamiento y de prueba podrían estar utilizando infor-

mación del mismo conjunto de datos fisiológicos recogidos durante la visualización

de un determinado videoclip.

Hold-Out tamaño entrenamiento memoria usada (kB) operaciones

0.98 76555 971.89 373892

0.99 38277 485.94 175423

0.999 3828 48.59 13715

0.9999 383 4.86 989

Table 4.7: Impacto del tamaño del conjunto de entrenamiento en la memoria y el
cálculo. Enfoque independiente de la materia.

Precisión Sensibilidad Especificidad Media geométrica Hold-Out

0.66 0.96 0.52 0.71 0.980

0.64 0.95 0.50 0.69 0.990

0.54 0.88 0.47 0.62 0.999

0.50 0.81 0.45 0.60 0.9999
Table 4.8: Exactitud, sensibilidad, especificidad y media geométrica para cada re-
tención probada asumiendo un coste de clasificación errónea de 8. Enfoque inde-
pendiente del sujeto.

4.1.4.2 Sistema DEAP-b2

Durante la investigación y el desarrollo del sistema DEAP-b1, identificamos cinco

inconvenientes diferentes:

1. El bajo número de voluntarios podría afectar a la variabilidad de los datos.

2. La complejidad y el desequilibrio del mapeo binario de miedo de PAD fue

particularmente alto para esta base de datos.

3. El hecho de no haber tenido en cuenta la extracción de características podría
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llevar a la pérdida de información fisiológica de interés.

4. La aplicación de una estrategia de Hold-Out sobre los valores fisiológicos fil-

trados podría dar lugar a métricas demasiado optimistas.

5. La complejidad espacial de este algoritmo perezoso de KNN era considerable-

mente alta cuando se consideraban valores de Hold-Out bajos.

El primer inconveniente puede solucionarse considerando el conjunto completo de

voluntarios a expensas de omitir la señal SKT de todos ellos. Obsérvese que durante

el análisis exploratorio de los datos se encontraron imprecisiones en SKT para un

total de 11 voluntarios. La segunda deficiencia puede paliarse aplicando el mapeo

binario del miedo a partir de PA, que mostró una relación de desequilibrio menor.

La tercera razón es una de las más sensibles desde el punto de vista fisiológico, ya

que al considerar sólo los valores filtrados en bruto, estamos perdiendo toda la infor-

mación temporal, morfológica, basada en la frecuencia y no lineal. El cuarto incon-

veniente debe solucionarse para evaluar adecuadamente el rendimiento del sistema

y garantizar que no se proporcione a la fase de entrenamiento ninguna información

relacionada con las pruebas o incluso con las mismas. Por último, el quinto incon-

veniente afecta al tamaño del conjunto de entrenamiento y motiva la evaluación de

diferentes algoritmos de clasificación que proporcionen menos requisitos de espacio.

En base a estos problemas identificados, el sistema DEAP-b2 [181] intentó superar-

los considerando los 32 voluntarios del DEAP, sólo los datos de los sensores PPG y

GSR, un mapeo binario del miedo utilizando el espacio PA, y un conjunto completo

de 20 características que incluyen el dominio temporal, frecuencial y no lineal, (enu-

meradas en la Tabla 4.4 y detalladas en la Sección 4.1.3). Además, el proceso de

extracción de características se aplicó considerando una ventana de procesamiento

de 60 segundos, que se correspondía con la duración del estímulo y proporcionaba

un conjunto de 20 características por vídeo. De este modo, nos aseguramos de que

no se da información dentro del mismo vídeo tanto en el entrenamiento como en la

prueba al realizar la estrategia de Hold-Out.

Además de simplificar el problema de etiquetado y reducir el ratio de desequilibrio

mediante la elección de un mapeo binario de miedo basado en el espacio PA, se aplicó

una técnica de sobremuestreo sobre los datos de la clase minoritaria (miedo). En

concreto, se aplicó SMOTE para tratar los problemas de equilibrio observados [191].
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Esta técnica se basa en un enfoque de sobremuestreo de la clase minoritaria que

genera nuevas muestras considerando los vecinos 𝑘 más cercanos, en lugar de un

sobremuestreo con reemplazo. Así, en lugar de tener 1280 instancias (32 voluntarios

x 40 vídeos) con un ratio de equilibrio de clase de aproximadamente 76/24% (nega-

tivo/positivo), conseguimos un ratio de equilibrio de clase de hasta 50/50% con un

total de 1800 instancias. Obsérvese que el valor 𝑘 para el SMOTE se fijó en 5.

En cuanto a los clasificadores específicos utilizados en este sistema, se utilizaron

Gaussian naive Bayes (ecuación 4.2) y SVM con RBF kernel. Esta decisión se basó

en la consideración de dos hechos principales:

• Decidimos utilizar el mismo clasificador utilizado por DEAP (Gaussian naïve

Bayes) para proporcionar una comparación justa con respecto al conjunto de

datos original.

• Para superar la complejidad espacial de KNN, se aplica un clasificador SVM

con RBF kernel, ya que conserva todas las ventajas del algoritmo KNN, al-

macenando sólo los vectores de soporte durante el entrenamiento en lugar de

todo el espacio de entrenamiento.

Además del escalado de 0−1 realizado en el sistema anterior, se aplicó el z-score por

voluntario para normalizar los datos en este caso. Para la metodología de prueba del

sistema DEAP-b2, se ejecutó la estrategia Hold-Out desde 0,01 (1%) hasta 0,9 (90%)

para 100 iteraciones cada paso de 0,01. Además, para la validación del clasificador

SVM durante el entrenamiento, se implementa un 𝑘 − 𝑓𝑜𝑙𝑑 con 𝑘 = 5.

La topología del sistema, en este caso, se basa en un enfoque independiente del

sujeto, ya que uno dependiente del sujeto no era factible debido a la pequeña can-

tidad de datos (40 conjuntos de 20 características por voluntario). Además, aparte

de las métricas de clasificación utilizadas para el DEAP-b1, en este caso también se

da el Area Under the Curve (AUC), que proporciona una medida del rendimiento a

través de todos los posibles umbrales de clasificación y presenta la probabilidad de

que el modelo clasifique un positivo aleatorio más alto que un negativo aleatorio.

Todas estas consideraciones de DEAP-b2 se estructuran y combinan en seis con-

figuraciones diferentes para proporcionar un DSE acotado para el caso de uso inde-

pendiente del sujeto. Éstas son las siguientes:

• Caso 1. El sistema se implementa sin utilizar ninguna selección de caracterís-
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ticas y aplicando el clasificador gaussiano de Bayes ingenuo.

• Caso 2. El sistema utiliza el mismo método de selección de características

de filtro que DEAP (puntuación discriminante lineal de Fisher, ecuación 4.1),

pero implementa un clasificador SVM con kernel RBF. Este último se toma

de [148] con 𝛾 = 0, 15 y 𝐶 = 1.

• Caso 3. Esta configuración del sistema sigue la misma estructura que el caso

2, pero sin emplear la selección de características.

• Caso 4. Implementa SMOTE para tratar el problema de equilibrio, utiliza la

puntuación discriminante lineal de Fisher para seleccionar las características

relevantes y ejecuta el clasificador gaussiano naïve Bayes.

• Caso 5. Presenta la misma configuración que el Caso 4, pero utilizando el

clasificador SVM del Caso 2.

• Caso 6. Emplea SMOTE, puntuación discriminante lineal de Fisher para

seleccionar las características relevantes y un clasificador SVM con kernel

RBF. Además, se aplica una búsqueda en cuadrícula para encontrar los hiper-

parámetros óptimos para dicho clasificador.

En la tabla 4.9 se ofrece un análisis comparativo de estas seis implementaciones

diferentes, en el que se pueden apreciar los resultados de tipo aleatorio por las AUC

obtenidas para todos los casos, excepto el caso número seis. Nótese que algunos

de los valores de esta tabla han sido modificados en comparación con los obtenidos

en [181], ya que se ha realizado un mayor ajuste de los modelos después de dicha

publicación. En primer lugar, el clasificador gaussiano naïve Bayes del caso 1 ob-

tiene un rendimiento pobre. Esto puede verse afectado por la independencia de las

características extraídas, ya que se sabe que este tipo de clasificador proporciona

un buen rendimiento cuando las características son independientes entre sí. En-

tonces, llama la atención que una alta puntuación de precisión no signifique que

el modelo tenga un rendimiento adecuado. Por ejemplo, los casos 2 y 3 tienen la

tasa de clasificación más alta, pero no hay sensibilidad, sin embargo la especificidad

es cercana al 100%. Por lo tanto, se da la paradoja de la exactitud, por lo que la

exactitud sólo refleja la distribución de clases subyacente. También para estos dos

casos, la técnica de selección de características específicas por sí misma, es decir,

la puntuación discriminante lineal de Fisher, no proporciona ninguna ventaja. Esto
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Case Precisión Sensibilidad Especificidad Media Geométrica AUC
(𝜇(𝜎)) (𝜇(𝜎)) (𝜇(𝜎)) (𝜇(𝜎)) (𝜇(𝜎))

1 52.48 (0.34) 50.84 (2.14) 53.36 (0.90) 52.08 (1.38) 52.55 (1.13)
2 76.47 (0.34) 0.12 (0.12) 99.87 (0.11) 3.46 (0.11) 50.00 (0.10)
3 76.54 (0.37) 0.03 (0.07) 99.96 (0.07) 1.73 (0.07) 50.00 (0.10)
4 51.80 (0.54) 52.73 (0.94) 50.86 (0.90) 51.78 (0.91) 52.24 (0.80)
5 53.27 (0.73) 58.80 (2.83) 47.72 (1.77) 52.97 (2.23) 53.50 (2.20)
6 62.80 (4.75) 62.27 (4.14) 66.99 (5.79) 62.62 (4.73) 62.79 (4.72)

Table 4.9: Métricas de precisión, sensibilidad, especificidad y AUC para cada caso
asumiendo las condiciones especificadas, respectivamente. Enfoque independiente
del sujeto.

puede deberse al conjunto de características no óptimo que genera esta técnica, como

se ha indicado anteriormente en la sección 4.1.4. Los casos 4 y 5, en comparación

con el 6, demuestran que es esencial encontrar los hiperparámetros correctos para

lograr el mejor equilibrio entre sesgo y varianza. Así, aplicando una búsqueda en

cuadrícula, el rendimiento del esquema de clasificación mejora. Por último, el caso 6

combina un método de sobremuestreo sintético, una selección de rasgos clasificados,

un clasificador no lineal y un proceso de ajuste de hiperparámetros de búsqueda en

cuadrícula, logrando hasta un 62,79% de AUC, que supera al resto de los casos.

Aunque la media geométrica de este último caso es inferior a la obtenida para

el modelo dependiente del sujeto del DEAP-b1, hay que destacar de nuevo el in-

conveniente de validación que se observa al aplicar la estrategia Hold-Out directa-

mente sobre los valores fisiológicos filtrados. Además, al comparar los resultados

del DEAP-b2 con el DEAP-b1 para el sujeto-independiente, podemos observar que

ambos sistemas alcanzan una media geométrica similar, pero el DEAP-b2 supera al

DEAP-b1 en especificidad en más de un 15% y en precisión en más de un 8%. Esto

indica que el DEAP-b2 presenta un mejor equilibrio entre los falsos positivos y los

falsos negativos, lo que da lugar a un sistema de mejor rendimiento. Finalmente,

desde un balance de complejidad temporal y espacial, el SVM supera claramente

al anterior KNN implementado. Este último presenta 𝒪(𝑛 log 𝑛) y 𝒪(𝑛) para la

complejidad temporal y espacial respectivamente, siendo 𝑛 el tamaño del conjunto

de entrenamiento. Por el contrario, el SVM con el kernel RBF alcanza 𝒪(𝑛𝑠𝑣𝑑) y

𝒪(𝑛𝑠𝑣) para la complejidad temporal y espacial respectivamente, donde 𝑛𝑠𝑣 es el

tamaño o número de los vectores de soporte y 𝑑 es el número de atributos o carac-

terísticas a emplear. En el peor de los casos, considerando las 20 características y el
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millar de vectores de soporte elegidos sobre el conjunto completo de 1.800 instancias,

habrá un total de 20.000 operaciones por predicción, lo que es considerablemente

superior a las dependientes e independientes del sujeto de DEAP-b1. Sin embargo,

debido a la selección de características que realiza DEAP-b2, la mayoría de las it-

eraciones terminaron con la mitad de las características, lo que se traduce en 10.000

operaciones. Esta medida se encuentra entre los modelos DEAP-b1 dependiente del

sujeto y el independiente del sujeto que utiliza KNN. En cuanto a la complejidad

espacial, el SVM en este caso requiere hasta 39,06 kB (1000 𝑠𝑣 por cada caracterís-

tica), que también se encuentra entre los dos modelos DEAP-b1. Obsérvese que la

memoria utilizada en kB se basa en un tipo de datos enteros de 32 bits para todos

los vectores de soporte a almacenar.

Cabe destacar que pueden implementarse y aplicarse otras optimizaciones algorít-

micas SVM, así como otras alternativas de selección de características, para con-

seguir una menor cantidad de vectores de soporte, lo que reduciría tanto los re-

querimientos de tiempo como de espacio de este sistema conduciendo incluso en

algunos casos a un mejor rendimiento de reconocimiento. De hecho, la tabla 4.10

muestra los resultados para la misma configuración de entrenamiento, validación y

prueba que el caso número seis pero cambiando el método de selección de carac-

terísticas a mrMR. Esta técnica [192] se basa en la suposición de que dentro de

todo el conjunto de características dadas hay un conjunto mínimo-óptimo en el que

dichas características son mutuamente tan disímiles entre sí como sea posible, pero

también marginalmente tan similares a la variable de clasificación como sea posible.

Con esta técnica, queremos seleccionar las características que tengan la máxima

relevancia para la variable de clasificación (objetivo) y que presenten una redundan-

cia mínima en comparación con el resto de las demás características evaluadas. Así,

para medir dichas propiedades entre dos variables (𝑋 y 𝑌 ), se emplea la información

mutua, que viene dada por la ecuación 4.13

𝐼(𝑋, 𝑌 ) =
∑︁
𝑥∈𝑋

∑︁
𝑦∈𝑌

𝑝(𝑋,𝑌 )(𝑥, 𝑦)𝑙𝑜𝑔
𝑝(𝑋,𝑌 )(𝑥, 𝑦)
𝑝𝑋(𝑥)𝑝𝑌 (𝑦) , (4.13)

donde 𝑝(𝑥, 𝑦) es la distribución probabilística conjunta, y 𝑝(𝑥) y 𝑝(𝑦) son las fun-

ciones de densidad de probabilidad marginal para cada variable respectivamente. A
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partir de esta información, el nivel de similitud (o disimilitud) entre dos caracterís-

ticas (𝑖 y 𝑗) se codifica mediante la condición de mínimo; enunciada en la ecuación

4.14

𝑚𝑖𝑛 𝑊𝐼 , 𝑊𝐼 = 1
|𝑆|2

∑︁
𝑖,𝑗∈𝑆

𝐼(𝑖, 𝑗), (4.14)

donde 𝑆 es el subconjunto de características mínimas-óptimas. Del mismo modo, el

poder discriminante de los rasgos o la relevancia para la variable de clasificación ℎ

(objetivo) viene dado por la condición máxima establecida en la ecuación 4.15

𝑚𝑎𝑥 𝑉𝐼 , 𝑉𝐼 = 1
|𝑆|

∑︁
𝑖∈𝑆

𝐼(ℎ, 𝑖). (4.15)

A partir de las ecuaciones 4.14 y 4.15, se puede obtener el conjunto de características

mínimo-óptimo optimizándolas de forma simultánea y aplicando diferentes funciones

de criterio. En concreto, la implementación particular de mrMR para este sistema

aplicó el criterio Mutual Information Difference (MDI) para realizar el proceso de

clasificación. Ecuación 4.16

𝑚𝑎𝑥(𝑉𝐼 −𝑊𝐼). (4.16)

Dado que esta técnica de selección de características es un método de selección

de características por filtro que clasifica las características existentes basándose en

dichas premisas, debe indicarse el número de características finales, 𝐾, que se con-

siderarán después de dicha clasificación. En este caso, la selección se realiza en

base a un barrido experimental de parámetros teniendo en cuenta los requisitos de

rendimiento y almacenamiento. Finalmente, 𝐾 se fija en 10. Por lo tanto, los re-

sultados obtenidos utilizando esta técnica específica de selección de características

superan en más de un 18% el AUC del modelo independiente del sujeto de DEAP-

b2, manteniendo los mismos requisitos de almacenamiento. Este último experimento

demuestra que las posibilidades de optimización son elevadas en este complejo prob-

lema.

Caso Precisión Sensibilidad Especificidad Media Geométrica AUC

(𝜇(𝜎)) (𝜇(𝜎)) (𝜇(𝜎)) (𝜇(𝜎)) (𝜇(𝜎))

6+ 81.54 (8.69) 70.93 (14.92) 94.59 (3.89) 81.55 (10.21) 81.60 (8.70)

Table 4.10: Exactitud, sensibilidad, especificidad y métrica AUC para la selección
de características mrMR y SVM con kernel RBF. Enfoque independiente del sujeto.
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4.2 Clasificación del miedo mediante MAHNOB
Después de haber presentado los resultados de tres sistemas diferentes de detección

de miedo (uno dependiente del sujeto y dos independientes del sujeto) utilizando

el conjunto de datos DEAP y siendo conscientes de las limitaciones encontradas,

se requirió con fuerza la necesidad de un nuevo conjunto de datos en el que se

resolvieran o aliviaran estos problemas. Algunos de estos problemas identificados

se referían a la recuperación fisiológica entre estímulos, a las imprecisiones de los

datos de temperatura de la piel y al desequilibrio de clases del mapeo del miedo y

la binarización.

Como ya se ha revisado en la sección 3.2, la base de datos MAHNOB supera las

limitaciones de recuperación fisiológica de DEAP, mantiene la misma información

fisiológica recogida, y presenta incluso más etiquetas autoinformadas por los volun-

tarios. Además, no se observan problemas de medición del SKT, ni de ninguna otra

variable fisiológica, con ninguno de los voluntarios válidos. Estas afirmaciones se

ven incluso reforzadas por la literatura; por ejemplo, los autores en [193] realizaron

un DSE para los vectores de características de DEAP y MAHNOB para investigar

la relevancia de las características fisiológicas dentro de ambos conjuntos de datos.

Uno de sus experimentos concluyó que los estímulos de MAHNOB eran más inmer-

sivos emocionalmente que los de DEAP. De hecho, dicho trabajo ha motivado la

realización de posteriores y recientes investigaciones como [194]. Sobre esta base, en

este apartado se detallan los resultados obtenidos para un sistema de reconocimiento

binario de miedo dependiente e independiente del sujeto, basado en el conjunto de

datos MAHNOB. En concreto, y tratando de diseñar un sistema más especializado

hacia el objetivo a largo plazo de este trabajo de investigación, se fijan dos aspectos

clave de diseño:

• Sólo se emplean mujeres voluntarias. Esta restricción de diseño permite el

desarrollo de sistemas de reconocimiento de emociones muy especializados de-

bido a las particularidades emocionales entre hombres y mujeres, tal y como

se revisa en el Capítulo 2.

• Se contempla la binarización del miedo a partir del espacio PAD. El factor de

dominancia, como se revisa en el capítulo 2, es esencial para distinguir entre

algunas de las principales emociones negativas (miedo y rabia).
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Además, la segmentación de datos y otros procesos como la extracción de carac-

terísticas se modifican o amplían para mejorar los sistemas presentados en la sección

anterior.

Para la metodología específica seguida durante los experimentos de la base de datos

MAHNOB, la figura 4-17 muestra un diagrama simplificado de la experimentación

aplicada para cada voluntario y cada estímulo. A diferencia de DEAP, MAHNOB

tuvo en cuenta la reducción del sesgo emocional después de cada visualización de

estímulo y, por tanto, de las respuestas de emoción. De hecho, los clips neutros

utilizados se seleccionaron al azar de un conjunto más amplio proporcionado por

el laboratorio de psicofisiología de Stanford [195]. Esta consideración, junto con la

grabación de 30 segundos antes y después del ensayo, proporcionó una recuperación

fisiológica destinada a aislar la activación emocional entre los estímulos.

30-second 

pre-stimulus 

recording 

15-second 

neutral 

#trial

35 to 117-

seconds 

Video

Self-

Assessment

30-second 

post-stimulus 

recording 

Figure 4-17: Metodología seguida durante los experimentos de la base de datos
MAHNOB.

En cuanto a las diferencias técnicas concretas entre los sistemas presentados en este

capítulo y el que podría integrarse realmente en Bindi, cabe destacar dos de ellas.

Por un lado, el conjunto de datos de MAHNOB incluye la información de la activi-

dad cardíaca medida con un sensor de ECG. Por tanto, los diferentes algoritmos de

delineación o detección de picos, que se utilizan para extraer la información mor-

fológica para calcular las diferentes características o métricas, deben ser diseñados

específicamente para la morfología ECG y no para la PPG revisada en la sección

2.5.1. Este hecho afecta directamente a cualquier posible opción de integración del

preprocesado para aprovechar esa parte algorítmica en la plataforma embebida de

la pulsera inteligente de Bindi. Sin embargo, está demostrado en la literatura que

PPG es un sustituto válido de ECG para diferentes métricas o características como

HRV [196–198]. Por lo tanto, la extracción de características y los procesos poste-

riores pueden aplicarse de la misma manera independientemente de si el sensor es

ECG o PPG. Por otra parte, el equipo utilizado durante el experimento de MAH-

NOB fue el mismo que en DEAP. Además, incluso en el caso de disponer de datos

del sensor PPG y poder obtener características morfológicas al utilizar dicho equipo,
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debido a la tarea extremadamente difícil de obtener señales PPG de calidad clínica

(la morfología está totalmente preservada) con dispositivos wearables, eso no tendría

ningún valor debido al altísimo ruido en la vida real. Así pues, al igual que en el

apartado anterior, los sistemas aquí propuestos sirven como prueba de concepto y

facilitan los diferentes procesos DSE que hay que realizar para el diseño e integración

de un sistema óptimo de reconocimiento binario de emociones de miedo en el borde.

Precediendo a la presentación de los métodos empleados y los resultados obtenidos,

se detalla una revisión del estado del arte, en cuanto a la utilización de MAHNOB

para la generación de sistemas de reconocimiento de emociones. En primer lugar,

como ya se ha descrito en la sección 3.2, el trabajo original del conjunto de datos

MAHNOB comprende la adquisición de diferentes señales fisiológicas a una tasa de

frecuencia de muestreo de 256 Hz durante la visualización de diferentes estímulos

audiovisuales (20 clips emocionales intercalados con 20 clips neutros). En primer lu-

gar, utilizaron procedimientos básicos de preprocesamiento para eliminar las derivas

temporales de baja frecuencia de algunas señales y suavizarlas mediante filtros de

media móvil. Extrajeron un total de 102 características de todas las señales recogidas

y aplicaron un método de selección de características por filtro para utilizar sólo las

de mayor rango. En concreto, utilizaron el método Analysis of Variance (ANOVA)

de una vía y rechazaron cualquier característica no significativa (𝑝 > 0, 05). Para la

tarea de clasificación, proporcionaron dos sistemas de reconocimiento de emociones

basados en niveles bajos, medios y altos de detección de la excitación y la valen-

cia, para utilizarlos como punto de referencia en futuras investigaciones con estos

datos. Los niveles resultaron del mapeo entre las palabras clave emocionales y las

clases siguiendo [5]. En cuanto al clasificador, emplearon un SVM con RBF kernel y

ajustaron 𝛾 utilizando un CV de 20 veces. Por último, la estrategia de prueba apli-

cada fue LOSO. Al emplear todas las señales periféricas, proporcionaron métricas

promedio de ACC y F1-score y obtuvieron 46,20% y 38,00% para arousal y 45,50%

y 39,00% para valencia, respectivamente. Cabe destacar que también realizaron una

fusión de datos multimodal utilizando datos de EEG y de recolección de la mirada

y obtuvieron mejores resultados, 67,70% y 62,00% para arousal y 76,10% y 74,00%

para valencia.

Desde su publicación, se han propuesto en la literatura diferentes sistemas de apren-
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dizaje automático utilizando sus datos. Por ejemplo, se destaca el trabajo de [194]

por su similitud con nuestra investigación. Utilizaron el time warping dinámico

multidimensional como técnica no lineal para tratar la dinámica fisiológica seguido

de un clasificador de apilamiento. Sus resultados alcanzaron hasta un 94,00% y un

93,60% de precisión para un modelo de tres clases emocionales independiente del

sujeto, utilizando todas las señales fisiológicas de la base de datos MAHNOB y una

estrategia de CV 𝑘 − 𝑓𝑜𝑙𝑑. Aunque intentaron disminuir el posible efecto de sesgo

combinando ambas metodologías de etiquetado, mapeando el espacio dimensional

de la excitación y la valencia en una emoción discreta específica, su modelo no fue

capaz de capturar la diferencia entre el miedo y la ira. Este hecho es esencial para

nuestro caso de uso.

Entre el resto del estado del arte basado en la base de datos MAHNOB y en lo

que respecta específicamente al caso de uso de reconocimiento del miedo, el único

sistema propuesto en la literatura es nuestra publicación [186]. Este es el que se

detalla en los siguientes subapartados.

4.2.1 Consideraciones sobre el equilibrio de los estímulos y

las etiquetas
Al igual que la base de datos DEAP, los estímulos de MAHNOB se basaron en un

pool de estímulos anterior más amplio. En concreto, el estudio preliminar contiene

155 videoclips de diferentes películas [199]. Cada videoclip recibió una media de

10 anotaciones utilizando una escala Likert de 9 puntos para las dimensiones de

excitación y valencia mediante el SAM y etiquetas emocionales discretas. Basándose

en el acuerdo acumulativo de estas últimas, los investigadores seleccionaron hasta

14 estímulos de este estudio previo. Por ejemplo, se seleccionó el vídeo con mayor

número de etiquetas de miedo para elicitarlo. Los seis vídeos restantes hasta llegar

a los 20 vídeos del experimento se eligieron basándose en contenidos audiovisuales

populares en línea. Así, la mayoría de los estímulos seleccionados para esta base de

datos se eligieron siguiendo un criterio emocional de tipo discreto. Nótese que, como

ya se ha señalado, los 20 vídeos neutros utilizados para la recuperación fisiológica

fueron validados por el laboratorio de psicofisiología de Stanford.

En este contexto de etiquetado, los investigadores de MAHNOB no tuvieron en
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Table 4.11: Mapeo de dimensiones discretas para el arousal y la valencia basado
en [5] y adoptado por MAHNOB [12].

arousal and (M ¼ 0:71; SD ¼ 0:12) for valence. The key-
word-based feedbacks were used to generate each partici-

pant’s ground truth. The histograms of emotional self-

reports’ keywords and ratings given to all videos are shown

in Fig. 5. In Fig. 5, it is visible that the emotions which were
not initially targeted (see Table 3) have the least frequencies.

5.4 Emotion Recognition Results

In order to give the reader some baseline classification results,

emotion recognition results from three modalities and fusion

of ebest modalities are presented. Two classification schemes

were defined: first, along the arousal dimension, three classes

of calm, medium aroused, and excited, and second along the
valence dimension, unpleasant, neutral valence and pleasant.

The mapping between emotional keyword and classes which

are based on [14] and are given in Table 6.
A participant independent approach was taken to check

whether we can estimate a new participant’s felt emotion
based on others. For each video from the data set, the ground

truth was thus defined by the feedback given by each
participant individually. The keyword-based feedback was
then translated into the defined classes. According to this
definition, we can name these classes calm, medium
aroused, and excited/activated for arousal and unpleasant,
neutral valence, and pleasant for valence (see Table 6).

To reduce the between participant differences, it is
necessary to normalize the features. Each feature was
separately normalized by mapping to the range ½0; 1� on
each participant’s signals. In this normalization the mini-
mum value for any given feature is subtracted from the same
feature of a participant and the results were divided by the
difference between the maximum and minimum values.

A leave-one-participant-out cross validation technique
was used to validate the user independent classification
performance. At each step of cross validation, the samples of
one participant were taken out as test set and the classifier
was trained on the samples from the rest of the participants.
This process was repeated for all participants’ data. An
implementation of the SVM classifier from libSVM [40] with
RBF kernel was employed to classify the samples using
features from each of the three modalities. For the SVM
classifier, the size of the kernel, �, was selected between
½0:01; 10�, based on the average F1 score using a 20-fold cross
validation on the training set. TheC parameter that regulates
the tradeoff between error minimization and margin
maximization is empirically set to 1. Prior to classification,
a feature selection was used to select discriminative features
as follows: First, a one-way ANOVA test was done on the
training set for each feature with the class as the independent
variable. Then, any feature for which the ANOVA test was
not significant (p > 0:05) was rejected.

Here, we used three modalities which are peripheral
physiological signals, EEG, and eye gaze data. From these
three modalities, the results of the classification over the two
best modalities were fused to obtain the multimodal fusion
results. If the classifiers provide confidence measures on their
decisions, combining decisions of classifiers can be done
using a summation rule. The confidence measure summation
fusion was used due to its simplicity and its proven
performance for emotion recognition according to [34].

The data from the 27 participants which had enough
completed trials was used. Five hundred thirty-two samples
of physiological responses and gaze responses were
gathered over a potential data set of 27� 20 ¼ 540 samples;
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Fig. 5. This bar chart shows the frequency of the emotional keywords
assigned to all videos.

TABLE 6
The Emotional Keywords Are Mapped into Three Classes

on Arousal and Valence

TABLE 5
This Table Lists the Features Extracted

from Eye Gaze Data for Emotion Recognition

Number of features extracted from each channel is given in brackets.

cuenta los aspectos de la dimensión emocional (arousal, valencia y dominancia), por

lo que el conjunto de etiquetas de verdad básica generadas se basó en emociones

discretas. Sin embargo, proporcionaron y utilizaron un mapeo discreto-dimensional

para la excitación y la valencia basado en [5] como se muestra en la Tabla 4.11.

Desgraciadamente, como el estudio preliminar de [199] no es de acceso público, no

podemos realizar el mismo análisis de etiquetado exploratorio (informes de la verdad

en el terreno frente a los autoinformes de los voluntarios durante el experimento) que

con el DEAP. Por lo tanto, los autoinformes de los voluntarios pueden compararse

con la verdad de campo sólo mediante la binarización del miedo de estos últimos

basada en las etiquetas emocionales discretas. Tras realizar la binarización de las

etiquetas de miedo en MAHNOB utilizando los autoinformes proporcionados para

arousal, valencia y dominancia y siguiendo el mapeo de miedo propuesto en la sección

2.3.4, se analizó la distribución obtenida para todas las voluntarias consideradas,

resultando asimétrica. Esto significa que la aparición de las etiquetas de miedo no

fue uniforme para todas las participantes. Así, la figura 4-18 muestra que el 60% de

las voluntarias informaron de más del 30% de etiquetas de miedo binarias, mientras

que el resto de las voluntarias estaban por debajo de esa cantidad. Obsérvese que, en

esta figura, la notación 𝑉 𝑥 se refiere al voluntario 𝑥, con 𝑥 ∈ 1 . . . 12, y la notación 𝐺

se refiere a la distribución original de miedo binario del experimento (el número real

de estímulos destinados a provocar miedo; es decir, sólo el 20% de la cantidad total

de vídeos). Esta situación desequilibrada es especialmente relevante para V11, con

sólo un 5% de datos de miedo. Este análisis respalda los supuestos ya destacados

en capítulos anteriores, como que la interpretación de los estímulos depende en gran

medida de los voluntarios.
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Figure 4-18: Distribución de clases para el mapeo binario del miedo sobre los autoin-
formes subjetivos en MANHOB para todas las diferentes voluntarias consideradas,
y la distribución de clases original prevista en el experimento.

Sin embargo, en el caso de la evaluación del balance medio o de los porcentajes

medios de clase de las 12 voluntarias, la relación de desequilibrio es de 1:2,6 (Clase

Sin Miedo:Clase con Miedo) y los porcentajes de clase consecuentes ascienden al

72,50% y al 27,50% para las clases negativas y positivas respectivamente. Sobre

esta base, se pueden obtener dos conclusiones. Por un lado, la media de clases posi-

tivas en este caso es incluso superior a la que se espera conseguir siguiendo la verdad

de campo. Aunque la diferencia es inferior al 10%, este hecho debe contextualizarse

con respecto a los voluntarios masculinos. Por ejemplo, los porcentajes medios de

las clases de los nueve voluntarios masculinos válidos son del 81,11% y del 18,89%

para las clases negativas y positivas respectivamente. Sin considerar la realización

de ninguna prueba estadística para valorar si la diferencia entre hombres y mujeres

es significativa, desde el punto de vista emocional y teniendo en cuenta las difer-

encias de procesamiento emocional de las mujeres expuestas en el apartado 2.3.3,

éste podría ser uno de los factores que están influyendo. Por otro lado, el equilibrio

obtenido para esta base de datos utilizando el mapeo binario de miedo desde el espa-

cio PAD es menor que el ratio de desequilibrio observado al realizar el mapeo binario

de miedo desde el espacio PA con DEAP. Esta conclusión no puede interpretarse

directamente como que MAHNOB es mejor que DEAP, pero proporciona una visión

de las diferencias en cuanto a la percepción o eficacia de los estímulos de ambas

bases de datos, lo que está en línea con trabajos de investigación anteriores [193].
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Siguiendo el mismo análisis de esquemas para esta base de datos que el aplicado

a la DEAP, se evalúan las correlaciones interindividuales de las etiquetas. En este

caso, los resultados obtenidos tras una prueba de Levene y una prueba de Kruskal-

Wallis rechazaron la hipótesis nula de que las varianzas son iguales en todos los

voluntarios (p<0,001). Nótese que el conjunto de etiquetas binarizadas presenta

una distribución no normal y que el nivel de significación se fijó en p<0,05. Tras

estos procesos, se aplican la correlación de Spearman y la prueba de independencia

de Chi-cuadrado, Figuras 4-19a y 4-19b. Los resultados obtenidos se aproximan y no

rechazan la hipótesis nula en promedio para cada uno de los 12 voluntarios, lo que

indica que la correlación media se considera no significativa y las diferentes variables

son independientes. Por lo tanto, se puede concluir que no hay pruebas suficientes

para sugerir que exista una asociación entre las etiquetas binarias de miedo de los

voluntarios. Además, al comparar estas gráficas con las obtenidas para el estudio de

correlación e independencia de los sistemas anteriores utilizando DEAP y el binario

de miedo también de PAD, se observa una mayor concordancia en este caso.
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Figure 4-19: Valores 𝑝 promediados para todos los voluntarios MAHNOB consider-
ados y sus etiquetas aplicando: a) la correlación de Spearman, y b) para la prueba
Chi-cuadrado de independencia. En este caso, las etiquetas se binarizan utilizando
el mapeo basado en el miedo binario.

A partir del análisis aportado en este apartado, se demuestra que el mapeo binario

de miedo a partir de PAD con MAHNOB es equivalente al realizado a partir de PA

utilizando DEAP, lo que beneficia a los objetivos de este trabajo de investigación

ya que se pueden aplicar para el actual las mismas o similares técnicas utilizadas

para el paradigma de reconocimiento de emociones de este último. Hay que tener en

cuenta que los diferentes resultados recogidos en el estudio de balance de estímulos y
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consideración de etiquetas aportados en este apartado estuvieron siempre presentes

durante el diseño de dichos sistemas.

4.2.2 Análisis exploratorio de datos, segmentación y filtrado

de datos
El análisis exploratorio de datos realizado con MAHNOB siguió el mismo pro-

cedimiento que con el DEAP. Se generaron diferentes gráficos sincronizados con la

metodología experimental para comprobar las recuperaciones fisiológicas o el clip

neutral previo al estímulo, así como los rangos fisiológicos normales para todos los

voluntarios considerados. Tras este análisis, se llegó a la conclusión de que, por

término medio, los 30 segundos de datos al principio y al final del intervalo de

videoclips junto con los clips neutros se comportaban realmente como se esperaba,

lo que conducía a la estabilización de las señales fisiológicas y apuntaba al ais-

lamiento emocional entre estímulos. Por lo tanto, se eliminaron los períodos de 60

segundos correspondientes a los 30 segundos anteriores y posteriores al estímulo en

esta experimentación específica.

Como se indica en la sección 3.1.2, se utilizan métodos de segmentación de datos

o basados en ventanas para extraer la información relacionada con la emoción en

relación con los instantes de tiempo. A diferencia del sistema presentado anterior-

mente en este capítulo, este sistema opera sobre una base de segmentación de datos

siguiendo los procedimientos típicos de segmentación de datos en la literatura [85].

En cuanto a la DSE que se enfrenta en esta etapa, se debe elegir una longitud de

ventana adecuada para asegurar: que (1) la resolución de la frecuencia es suficiente

para tratar todas las características basadas en la frecuencia, y (2) la longitud de

cada ventana es la mínima posible para facilitar las tareas de procesamiento del

host.

Para nuestro caso de uso específico y en función de las características que se van

a extraer, que se describen y detallan más adelante, la distinción de frecuencias

mínima requerida entre bandas es de 0,05 Hz, lo que se puede garantizar utilizando

un tamaño de ventana de 20 segundos. Con esta duración de la ventana, se cumplen

estas dos condiciones. Además, se emplea un solapamiento del 50%. Para seleccionar

la duración óptima de la ventana y el solapamiento, hay que evaluar diferentes
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consideraciones:

• Tanto el tiempo (cuanto más grande es la ventana, más largo es el proce-

samiento) como la complejidad computacional (cuanto más grande es el sola-

pamiento, más operaciones se necesitan en el mismo tiempo).

• Hechos fisiológicos. Están relacionados con la naturaleza no estacionaria de

estas señales, que pueden ser borrosas para ventanas muy grandes.

• Tamaño de entrenamiento del aprendizaje automático. Se refiere al número

final de muestras o instancias proporcionadas después de la creación de ven-

tanas, ya que el vector de características se extrae de cada ventana y, por

tanto, el número de puntos de entrenamiento y de prueba varía en función del

número de ventanas obtenidas de los datos.

En nuestro caso, se asumen algunas limitaciones fisiológicas cuando se trata de ven-

tanas de 20 segundos. Por ejemplo, una duración de ERSCR superior a 20 segundos

no puede ser capturada en una sola ventana. Obsérvese que, como se indica en la sec-

ción 2.5, los ERSCRs pueden variar entre 1 y 30 segundos, aunque la configuración

inicial de un solapamiento del 50% permite una compensación equilibrada entre la

cantidad de información ERSCR que se pierde y los requisitos de memoria. Basán-

donos en la duración de nuestras ventanas y en el solapamiento, la segmentación

media por vídeo dio lugar a cinco ventanas o instancias, que tenían la misma clase

o etiqueta.

En cuanto al almacenamiento de las señales adquiridas en una plataforma in-

tegrada, suponiendo, por ejemplo, una anchura máxima de 32 bits para cada punto

de datos, los parámetros establecidos conducirían a una necesidad de memoria de

60 KB (256 muestras por segundo × 20 s × 3 sensores para muestras de 32 bits).

Este espacio de almacenamiento podría ser proporcionado por los actuales sistemas

en chip que se utilizan para muchos dispositivos vestibles. No obstante, estos requi-

sitos dependen de la aplicación y pueden modificarse y ajustarse en función de las

capacidades de la plataforma integrada.

Independientemente de la longitud de la ventana, los datos se encapsulan en ranuras

de tiempo fijas para ser procesados cuando se llenan, Figura 4-20. Estos datos

segmentados (ventanas) obtenidos se preprocesan para eliminar el ruido y otros

componentes no útiles para los siguientes pasos. Así, la calidad global de la señal se
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mejora mediante filtros de denoising, centrándose en sus características fisiológicas

específicas. En concreto, la señal ECG en bruto se somete a un filtro FIR de paso

de banda a través de una cascada de filtrado de paso bajo y alto para facilitar la

complejidad. Además, la línea de base residual se elimina utilizando una etapa de

filtrado Butterworth IIR, que dio lugar a un filtro IIR de tercer orden con -6 dB

a 0,5 Hz. Hay que tener en cuenta que utilizamos una transformación bilineal con

prewarping de frecuencia para generar los coeficientes digitales. Después, se aplica

Automatic Gain Control (AGC) para limitar la señal y mejorar la detección de picos.

Para las señales GSR y SKT, se emplean filtros FIR de paso bajo para eliminar los

ruidos de alta frecuencia.

window #1

window #2

window #(𝑛 − 1)

window #𝑛

…

timeline𝑥𝑡𝑥𝑜 𝑥𝑤

processing

Figure 4-20: Proceso típico de segmentación de datos en los sistemas de re-
conocimiento de emociones basados en el aprendizaje automático.

4.2.3 Extracción de características
Para mejorar los resultados obtenidos con el DEAP-b1 y el DEAP-b2, la prop-

uesta presentada en este capítulo considera y amplía las características de los tres

grupos principales: características en el dominio del tiempo, en el dominio de la

frecuencia y no lineales. Este conjunto de características comprende un total de

48 características que se detallan en las tablas 4.12, 4.13, y 4.14, para los tres sen-

sores fisiológicos respectivamente. En concreto, se incluyen 25 características para

el ECG (dos en el dominio del tiempo, nueve en el dominio de la frecuencia y 14

características no lineales), 17 características para el GSR (seis en el dominio del

tiempo, tres en el dominio de la frecuencia y ocho características no lineales) y seis

características para el SKT (cuatro en el dominio del tiempo y dos en el dominio

de la frecuencia). Nótese que todas las características consideradas se basan en la
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literatura fisiológica aceptada y conocida que trata de características relacionadas

con las emociones [8, 200, 201], así como las características implementadas anteri-

ormente (DEAP-b1 y DEAP-b2). Además, para este sistema, hemos aumentado

considerablemente las características no lineales consideradas en nuestro modelo,

que se basan en publicaciones recientes que incluían también estas métricas sintéti-

cas en los sistemas de reconocimiento de emociones [160, 161]. En las siguientes

subsecciones se detallan las diferentes características específicas extraídas para los

tres dominios y señales diferentes.

Table 4.12: Características extraídas para la señal ECG y la propuesta de re-
conocimiento binario de emociones de miedo utilizando el conjunto de datos MAH-
NOB.

Sensor Domain Features

ECG Time-domain: Mean of Inter-Beat-Interval

(25) (2) Heart rate variability

Frequency-domain: Power spectral density of four bands

(9) (0–0.1 Hz, 0.1–0.2 Hz, 0.2–0.3 Hz and 0.3–0.4 Hz)

Inter-Beat-Interval Power spectral density for

Low frequency (LF) (<0.08 Hz)

Medium frequency (MF) (0.08–0.15 Hz)

High frequency (HF) (0.15–0.5 Hz)

Total energy ratio for MF

Spectral density ratio between

LF and HF band

Non-linear: Multiscale entropy at five levels

(14) Detrended fluctuation for filtered data

Detrended fluctuation for Inter-Beat-Interval

Recurrence rate

Determinism

Laminarity

Longest RP diagonal line

Diagonal lines entropy

Trapping time

Correlation dimension
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Table 4.13: Características extraídas para la señal GSR y la propuesta de re-
conocimiento binario de emociones de miedo utilizando el conjunto de datos MAH-
NOB.

Sensor Domain Features

GSR Time-domain: Filtered data mean value

(17) (6) ERSCR including number of peaks

ERSCR Amplitude and rise time

Standard deviation

First quartile

Third quartile

Frequency-domain: Power spectral density of two bands

(3) for SCL and SCR components

(0–0.05 Hz, 0.05–1.5 Hz)

Spectral density ratio for 0–0.05 Hz

Non-linear: Detrended fluctuation for filtered data

(8) Recurrence rate

Determinism

Laminarity

Longest RP diagonal line

Diagonal lines entropy

Trapping time

Correlation dimension

Table 4.14: Características extraídas para la señal SKT y la propuesta de re-
conocimiento binario de emociones de miedo utilizando el conjunto de datos MAH-
NOB.

Sensor Domain Features

SKT Time-domain: Filtered data mean value

(6) (4) Standard deviation

Skewness

Kurtosis

Frequency-domain: Power spectral density of two bands

(2) (0–0.1 Hz, 0.1–0.2 Hz)

Antes del proceso de extracción de características, tienen lugar las tareas de delin-

eación fisiológica. Para este sistema, la señal de ECG sin procesar se somete a la

identificación de picos para determinar el IBI y extraer una estimación válida de la
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frecuencia cardíaca y los parámetros relacionados con la variabilidad de la misma.

En concreto, se aplicó un detector de picos ECG basado en el algoritmo desarrollado

por Pan y Tompkins en [202]. La figura 4-21 muestra la arquitectura de dicho algo-

ritmo, que se alimenta de la señal ECG filtrada. Las diferentes etapas se describen

como sigue:

• Diferenciador. Suele concebirse como un filtro derivador que se encarga de

proporcionar información sobre la pendiente del patrón de onda morfológica

del ECG. También atenúa los componentes de baja frecuencia, que se refieren

a la despolarización auricular y a la repolarización ventricular. Para nuestro

caso, este proceso se realiza a partir de la primera diferencia de la señal de

ECG filtrada de entrada.

• Elevación al cuadrado. Es una operación no lineal que enfatiza los picos del

ECG amplificando el resultado de la derivada anterior.

• Elemento Integrador. Como la salida de la derivada cuadrada puede presentar

múltiples picos dentro de la duración de un solo periodo de ECG, se utiliza un

filtro de integración de ventana móvil para suavizar dicha señal. La anchura

de este filtro suele ser de 150 ms. La señal de salida de este proceso se conoce

como señal integrada.

• Comprobación del umbral y búsqueda de la señal. Estos últimos procedimien-

tos tienen por objeto identificar y corroborar la correcta localización de los

picos locales dentro de la señal integrada. Se aplican diferentes restricciones

fisiológicas para asegurar la detección fisiológica de los picos del ECG, como

el tiempo de bloqueo de 200 ms entre los picos identificados. Una vez identifi-

cados todos los picos de la señal integrada, se aplica un proceso de búsqueda

de vuelta para descartar y corregir aquellos picos o intervalos RR que causen

problemas potenciales. Por ejemplo, en nuestro caso, realizamos una doble

iteración buscando cinco picos por delante y evaluando la evolución mediana

del vector pico a pico.

Jose A. Miranda, Tesis Doctoral 144



4.2. Clasificación del miedo mediante MAHNOB
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Figure 4-21: Esquema de la arquitectura del algoritmo de identificación de picos
ECG aplicado en este trabajo.

Para la señal GSR, el FIR aplicado está diseñado para preservar la información

por debajo de 1,5 Hz, que es la frecuencia máxima de la actividad SCR. Este

filtro también se utiliza con la señal SKT para aprovechar el almacenamiento de

un solo conjunto de coeficientes de filtro. En cuanto a la delineación de GSR,

aplicamos los mismos procesos que se realizan con la base de datos DEAP. Así,

se utiliza una combinación lineal seguida de la ecuación 2.7, a través de la cual se

obtiene la tendencia de la señal GSR (SCL) mediante un filtro de mediana móvil

con una ventana deslizante de cuatro segundos. Esa salida se resta a la señal GSR

filtrada, obteniendo la componente SCR. Ambos componentes, así como la señal

GSR filtrada, se utilizan para extraer las métricas o características sintéticas que se

detallan en los siguientes apartados.

4.2.3.1 Dominio del tiempo y de la frecuencia

Para las características del dominio del tiempo que se van a extraer en este sistema,

siguen la misma distinción o agrupación que las presentadas y detalladas en la

sección 4.1.3, ya que se pueden dividir entre características estadísticas de orden

superior y morfológicas. Sin embargo, el sistema propuesto en esta sección amplía las

características estadísticas de orden superior en dos métricas adicionales: skewness

y kurtosis. En concreto, se aplican a la señal SKT. Por un lado, la primera se

refiere como un indicativo de la asimetría, positiva o negativa, que se desvía de una
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distribución normal y viene dada por

𝑠 = 1
𝑁

𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝑥)3

𝜎3 , (4.17)

donde 𝑥 es el SKT filtrado con 𝑁 muestras en este caso, y 𝑥 y 𝜎 son la media y

la desviación estándar para la ventana de procesamiento actual. Por otra parte,

kurtosis es la métrica estadística relacionada con la forma de una distribución de

probabilidad mediante la medición del grado de concentración que se presenta alrede-

dor de la media de la distribución de frecuencias para una variable aleatoria de valor

real, también descrita como la medida de la cola. Esta medida estadística de orden

superior viene dada por,

𝑘 = 1
𝑁

𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝑥)4

𝜎4 . (4.18)

Estos momentos estadísticos permiten caracterizar la distribución temporal del SKT

a lo largo del estímulo visualizado.

4.2.3.2 Dominio No-lineal

Para este sistema, el conjunto de características no lineales se amplía añadiendo

hasta ocho nuevas características. La mayoría de ellas se basan en la teoría del caos

y en técnicas de análisis de series temporales. Se describen y detallan a continuación.

• Detrended Fluctuation Analysis (DFA). Se trata de una potente técnica que

puede aplicarse si se sospecha o se sabe que existen señales no estacionarias.

Permite estimar el escalamiento de la ley de potencia (fractal) o el exponente

de Hurst de una señal procedente de un sistema expuesto a dichas no esta-

cionarias [203]. De hecho, en este caso, esta métrica proporciona una medida

relativa a la autosimilitud fisiológica a diferentes resoluciones (tamaños de ven-

tana), que puede traducirse en una evaluación de la complejidad fisiológica.

Así, la serie temporal de longitud 𝑁 se integra primero, 𝑦, y se encapsula en

cajas o ventanas de longitud 𝑛. Estos segmentos no superpuestos se ajustan

a un polinomio del que se obtiene la tendencia local 𝑦𝑛. Por último, la serie

temporal integrada se detrae restando dicha tendencia local. La fluctuación
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media cuadrática 𝐹 (𝑛) viene dada por la siguiente ecuación:

𝐹 (𝑛) =

⎯⎸⎸⎷ 1
𝑁

𝑁∑︁
𝑘=1

[𝑦(𝑘)− 𝑦𝑛(𝑘)]2, (4.19)

que se repite para todos los tamaños de ventana a evaluar. Obsérvese que

en nuestro caso el ajuste polinómico es lineal (primer orden) y el número de

tamaños de ventana en los que evaluar las fluctuaciones se establece empíri-

camente que 𝑛 ∈ 𝑡𝑤/10 . . . 𝑡𝑤 con 10 pasos de muestra, donde 𝑡𝑤 es el tamaño

de muestra de la ventana de procesamiento.

• Tasa de recurrencia. Ésta y las siguientes características se basan en la inter-

pretación matemática de los Recurrence Plot (RP)s. Estos se conceptualizan

como gráficos bidimensionales en los que se pueden representar y cuantificar

los estados de la trayectoria del espacio de fase de un sistema dinámico. Di-

chos estados se denominan las recurrencias que el sistema o señal presenta a lo

largo de una determinada ventana de procesamiento temporal. Dicha repre-

sentación bidimensional se obtiene mediante el cálculo de las distancias entre

dos estados y la comparación con respecto a un umbral predefinido, siguiendo

𝑅𝑖,𝑗 = Θ(𝜖𝑖 − ||𝑥𝑖 − 𝑥𝑗||), 𝑥𝑖 ∈ 𝑅𝑚, 𝑖, 𝑗 = 1, ..., 𝑁, (4.20)

donde 𝑖 y 𝑗 son dos estados arbitrarios, 𝜖𝑖 es el umbral utilizado para la evalu-

ación de la recurrencia, 𝑥𝑖 y 𝑥𝑗 son los módulos respectivos para cada estado,

y 𝑚 es la dimensión incrustada a considerar. Obsérvese que la separación 𝑡

entre los espacios 𝑖 y 𝑗 puede ajustarse como se desee y sea necesario también.

Para nuestro sistema, estimamos 𝑡 y 𝑚 utilizando la información mutua [204]

y el falso vecino más cercano [205], respectivamente, y definimos 𝜖 como el

10% del diámetro promedio del espacio de fase de las observaciones [206]. Una

vez obtenido el RP, la relación de la tasa de recurrencia puede derivarse de

𝑅𝑅 = 1
𝑁2

𝑁∑︁
𝑖,𝑗=1

𝑅𝑖,𝑗, (4.21)

que corresponde a la suma de correlación y cuantifica la cantidad de estados

de recurrencia detectados.
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• Dimensión de correlación. Esta técnica se utiliza habitualmente en el análisis

de series temporales para caracterizar el atractor de un sistema dinámico, es

decir, en este caso para medir la complejidad de un sistema fisiológico. Una

dimensión de correlación aproximada o 𝐷2 puede calcularse como

𝐷2 ≈ 𝑙𝑜𝑔(𝑅𝑅)
𝑙𝑜𝑔(𝜖) . (4.22)

• Determinismo. A partir del gráfico RP, las líneas diagonales proporcionan in-

formación sobre los patrones fisiológicos repetitivos de la serie temporal anal-

izada. Esto se cuantifica mediante la siguiente ecuación:

𝐷𝐸𝑇 =
∑︀𝑁

𝑙=𝑙𝑚𝑖𝑛
𝑙𝐷(𝑙)∑︀𝑁

𝑖,𝑗=1 𝑅𝑖,𝑗

=
∑︀𝑁

𝑙=𝑙𝑚𝑖𝑛
𝑙𝐷(𝑙)∑︀𝑁

𝑙=1 𝑙𝐷(𝑙)
, (4.23)

donde 𝐷(𝑙) es el histograma de las diferentes longitudes de las líneas diag-

onales. Obsérvese que debe proporcionarse un parámetro mínimo de línea

diagonal 𝑙𝑚𝑖𝑛, que en nuestro caso se fija empíricamente en 2.

• Laminaridad. Esta característica cuenta el porcentaje de puntos de recurrencia

que forman líneas verticales dentro de la RP. Estos se denominan estados

caóticos del sistema o no periódicos. Viene dada por

𝐿𝐴𝑀 =
∑︀𝑁

𝑙=𝑙𝑚𝑖𝑛
𝑙𝑉 (𝑙)∑︀𝑁

𝑖,𝑗=1 𝑅𝑖,𝑗

=
∑︀𝑁

𝑙=𝑙𝑚𝑖𝑛
𝑙𝑉 (𝑙)∑︀𝑁

𝑙=1 𝑙𝑉 𝑙
, (4.24)

donde 𝑉 (𝑙) es el histograma de las diferentes longitudes de líneas verticales.

• Línea diagonal RP más larga. La cuantificación de la línea diagonal más larga

dentro de la gráfica RP permite caracterizar la cantidad máxima de tiempo

periódico dentro del sistema. Esto viene dado por

𝐿𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑙𝑖; 𝑖 = 1, ..., 𝑁𝑙), (4.25)

donde 𝑁𝑙 se refiere al número total de líneas diagonales dentro de la parcela

RP. En nuestro caso, la implementación se realiza empleando un algoritmo de

clasificación rápida utilizando las líneas diagonales previamente identificadas.

• Tiempo de captura. Como la característica anterior pretende caracterizar la
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periodicidad de la señal, el tiempo de atrapamiento proporciona información

sobre la cantidad de estados no estacionarios que se repiten dentro de la parcela

RP. Se calcula como sigue:

𝑇𝑇 =
∑︀𝑁

𝑙=𝑙𝑚𝑖𝑛
𝑙𝑉 (𝑙)∑︀𝑁

𝑙=𝑙𝑚𝑖𝑛
𝑉 𝑙

. (4.26)

• Entropía de las líneas diagonales. Finalmente, para considerar la incertidum-

bre de la periodicidad de la señal, se aplica la entropía de Shannon a la dis-

tribución de probabilidad de las longitudes de las líneas diagonales 𝑝(𝑙). Esto

se calcula como:

𝐸𝑁𝑇𝑅 = −
𝑁∑︁

𝑙=𝑙𝑚𝑖𝑛

𝑝(𝑙)𝑙𝑜𝑔(𝑝(𝑙)). (4.27)

4.2.4 Sistemas de clasificación del miedo
En los siguientes apartados se detallan y explican los resultados obtenidos con el

sistema propuesto utilizando MAHNOB. En concreto, se presentan dos sistemas:

dependiente e independiente del sujeto. Ambos utilizan el mapeo binario de miedo

del espacio PAD analizado en la sección 4.2.1. Además, a diferencia de los sis-

temas DEAP anteriores, cabe destacar algunas particularidades. En primer lugar,

se aplican tres clasificadores diferentes. Dos de ellos son los mismos clasificadores

empleados para los sistemas DEAP, SVM y KNN. El tercer clasificador es, en real-

idad, un conjunto de clasificadores que siguen un enfoque de aprendizaje ensemble.

Para ello, se utiliza un algoritmo AdaBoost. Nótese que este último también ha sido

revisado en la sección 3.1.7.

En este caso, y de cara a una mejor sintonización, la optimización de los hiper-

parámetros se realiza mediante una optimización bayesiana. Esta técnica pretende

minimizar la tasa de error de clasificación a lo largo de las iteraciones, apoyándose

en una estrategia CV. En concreto, se incluye una técnica SMBO. Así, la generación

de nuevos hiperparámetros a evaluar se somete a procesos gaussianos, que aprox-

iman la distribución de la función de coste 𝑓(𝑥) ∼ 𝐺𝑃 (Gaussian Process). Esta

distribución se actualiza a medida que se itera con los nuevos valores conocidos para

los nuevos hiperparámetros. De este modo, se construye la función de distribución

final 𝑝(𝑓(𝑥)|𝑓(𝑥*)) donde 𝑥* se refiere a los valores históricos. Con esta estimación,

en el siguiente paso se calcula el punto que podría ser un candidato potencial. Para
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ello, se utiliza una función 𝛼(·) llamada de adquisición. Para la definición de esta

función de adquisición, existen diferentes opciones. En este caso, se ha utilizado la

estrategia de probabilidad de mejora, que trata de estimar la probabilidad de una

mejora con la siguiente muestra.

En cuanto al procedimiento de validación, se han validado los modelos sujeto-

dependiente y sujeto-independiente en base a un esquema estratificado de 𝑘 − 𝑓𝑜𝑙𝑑

CV (𝑘 = 5). Por un lado, para los modelos dependientes del sujeto, se calculó

la media de todas las métricas para todos los voluntarios y la desviación media

absoluta (DAM) a partir de los valores de CV obtenidos. Por otro lado, los modelos

independientes del sujeto se dividieron en conjuntos de entrenamiento, validación

y prueba, empleando una estrategia LOSO. Esta última nos permitió estudiar el

rendimiento de varios sistemas independientes del sujeto entrenados con diferentes

combinaciones de sujetos y probados con un único voluntario sobre el que el sistema

no tenía información.

Los resultados presentados y el sistema fueron publicados en [186]. Nótese que en

este caso no se implementó un proceso de selección o reducción de características ni se

aplicó ninguna metodología de coste de clasificación errónea (aprendizaje sensible al

coste). La justificación de esta última decisión se basó en la obtención de resultados

de referencia para compararlos con futuras mejoras del sistema al añadir y aplicar

diferentes técnicas.

4.2.4.1 Modelos dependientes de la voluntaria

La tabla 4.15 muestra las métricas de rendimiento de validación y la dispersión para

los diferentes algoritmos de clasificación ligeros seleccionados para la generación de

cada modelo dependiente del sujeto para todos los voluntarios. Tras analizar los

resultados, se observa que no existe una relación de dependencia estricta entre la

distribución de clases y el rendimiento. No obstante, el rendimiento de los modelos

se vio directamente afectado por el tipo de clasificador utilizado. Además, otro

factor clave que podría haber influido en el rendimiento estaba relacionado con la

alineación de los patrones fisiológicos dependientes del sujeto y las etiquetas binarias

de mapas de miedo obtenidas. Además, el uso de las puntuaciones Gmean y F1 nos

permitió distinguir con mayor solidez los modelos de bajo rendimiento de los de

mayor rendimiento.
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Table 4.15: Métricas de rendimiento para cada modelo generado en función del sujeto y métricas de rendimiento medio y dispersión para
cada algoritmo de clasificación.

SVM KNN ENS

Training Trained ACC AUC Gmean F1 ACC AUC Gmean F1 ACC AUC Gmean F1
Type Volunteers (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD)

V1 89.00% 90.30% 87.73% 85.71% 88.00% 88.67% 87.90% 85.37% 88.00% 79.32% 85.12% 83.33%
V2 88.00% 92.43% 76.41% 71.43% 99.00% 99.89% 99.23% 87.72% 91.00% 97.47% 85.41% 80.85%
V3 91.00% 94.44% 71.20% 74.29% 94.00% 96.19% 90.47% 85.00% 97.00% 95.31% 98.13% 93.02%
V4 93.00% 95.29% 84.06% 75.86% 99.00% 96.67% 96.59% 96.55% 96.00% 99.69% 85.62% 84.62%
V5 76.00% 84.97% 75.01% 72.09% 81.00% 91.47% 85.62% 84.62% 98.00% 99.88% 97.95% 97.78%

Subject V6 90.00% 93.67% 87.92% 83.33% 98.00% 98.60% 84.08% 82.86% 99.00% 99.90% 99.23% 98.36%
dependent V7 93.00% 98.54% 92.47% 91.14% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

V8 85.00% 90.57% 81.22% 74.58% 94.00% 92.24% 90.58% 89.29% 93.00% 86.05% 92.12% 88.52%
V9 96.00% 98.44% 83.16% 77.78% 99.00% 99.44% 99.40% 95.24% 100.00% 100.00% 100.00% 100.00%
V10 89.00% 91.31% 87.73% 85.71% 94.00% 94.15% 93.24% 92.31% 100.00% 100.00% 100.00% 100.00%
V11 95.00% 50.00% 00.00% 00.00% 99.00% 90.00% 89.44% 88.89% 100.00% 100.00% 100.00% 100.00%
V12 77.00% 83.48% 62.91% 53.06% 91.00% 85.95% 84.97% 83.02% 94.00% 93.33% 90.58% 89.29%

88.50% 88.62% 74.15% 70.42% 94.66% 94.44% 91.80% 89.24% 96.33% 95.91% 95.51% 92.98%
(4.66%) (7.90%) (14.72%) 14.62% (4.33%) (4.02%) (4.92%) (4.53%) (3.28%) (4.94%) (5.62%) (6.38%)
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Sin embargo, los resultados presentados podrían estar sesgados debido a la re-

ducida cantidad de datos disponibles (100 muestras por voluntario, cinco ventanas

de media por vídeo), así como por la asimetría detectada (datos desequilibrados).

Centrándonos en la asimetría, este problema es especialmente relevante en V11.

El efecto en el rendimiento debido a la asimetría para este voluntario se muestra

en la Figura 4-22, que proporciona las matrices de confusión para V11 después de

aplicar los tres algoritmos. Por el contrario, las matrices de confusión del volun-

tario V7 también se muestran en la Figura 4-23. Este voluntario mostró el mejor

rendimiento en general, es decir, teniendo en cuenta las diferentes métricas para los

tres clasificadores aplicados. En estas figuras, la clase positiva (miedo) está repre-

sentada por el número dos, y la clase negativa (sin miedo) está representada por el

número uno. Las filas corresponden a la clase predicha y las columnas a la clase

verdadera o verdad fundamental. De izquierda a derecha y de arriba a abajo, cada

matriz de confusión muestra los índices de verdaderos negativos, falsos positivos y

falsas omisiones. La siguiente fila muestra los falsos negativos, los verdaderos pos-

itivos y la tasa de precisión. La última fila muestra la tasa de falsos negativos, la

especificidad y la precisión global. El resto de las matrices de confusión para cada

modelo dependiente del sujeto generado se muestran en [186].

Tras analizar estas matrices de confusión, también se comprobó que el rendimiento

de los algoritmos para V11 era asimétrico. Así, por ejemplo, SVM proporcionó una

alta precisión, de hasta el 95,00%, pero esta métrica estaba sesgada por el reducido

número de muestras de este voluntario dentro de la clase positiva (sólo cinco mues-

tras). En este caso, los resultados calculados de las métricas Gmean y F1 fueron del

0,00% debido a la tasa de predicción positiva nula, y el AUC fue del 50,00%, lo que

demuestra que este modelo de clasificación no se comportó mejor que la adivinación

aleatoria. El comportamiento mostrado por el SVM en este caso coincidió con el

rendimiento poco fiable habitual de este algoritmo para distribuciones extremada-

mente desequilibradas; es decir, el SVM se orienta hacia la clase mayoritaria para

optimizar la tasa de error durante la etapa de entrenamiento. Por el contrario, los

algoritmos de boosting suelen ofrecer un mejor comportamiento para las distribu-

ciones desequilibradas, tal y como muestra el ENS para este caso. No obstante, esta

situación de desequilibrio debería evitarse durante la generación de la base de datos,
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(c) ENS classifier
Figure 4-22: Matrices de confusión para un modelo dependiente del sujeto en V11,
detectado como un problema de asimetría.
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Figure 4-23: Matrices de confusión para un modelo dependiente del sujeto en V7.
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y debería mejorarse la calidad y la diversidad de los estímulos considerados. En el

caso de que esta situación no se abordara durante la generación de la base de datos,

el sesgo generado en el rendimiento podría resolverse parcialmente seleccionando

una técnica de clasificación adecuada, como se ha comentado anteriormente. Sin

embargo, la falta de información de una de las dos clases no puede resolverse, lo

que resulta en una posible clasificación incorrecta para las futuras muestras [207].

Otro posible enfoque para tratar este problema se basa en la aplicación de técnicas

de aumento de datos o de clases ponderadas, como se aplicó anteriormente para el

DEAP-b1 y el DEAP-b2. Por el contrario, en el caso de V7, el sistema mostró un

40,00% de información de clase positiva, lo que se traduce en un mejor rendimiento

del SVM. KNN y ENS siguieron superando a SVM debido a las razones expuestas

anteriormente para la optimización de la tasa de error de este clasificador.

4.2.4.2 Modelos independientes de la voluntaria

Centrándonos en el caso de uso independiente del sujeto, la combinación de todas

las muestras individuales dio como resultado un conjunto de datos más grande con

1200 muestras (100 muestras por voluntario × 12 voluntarios). Los rangos de las

señales fisiológicas difieren para los distintos individuos debido a la naturaleza de

cada uno y a las diferencias en la configuración de la medición (por ejemplo, la

temperatura ambiente). Por lo tanto, los datos (características) de cada voluntario

deben ser normalizados. Para ello, consideramos el método de la puntuación Z. Una

vez normalizada la base de datos, se generó el sistema de reconocimiento de miedo

binario utilizando un esquema 𝑘 − 𝑓𝑜𝑙𝑑 CV para la partición de validación y una

metodología de prueba LOSO.

La tabla 4.16 muestra las métricas de rendimiento para cada algoritmo de clasi-

ficación en la generación del modelo independiente del sujeto. Obsérvese que el

entrenamiento de estos modelos se realizó utilizando todos los voluntarios excepto

el utilizado para la prueba en cada iteración (datos de prueba no vistos); es decir,

se generaron y probaron un total de 12 modelos independientes del sujeto.
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Table 4.16: Métricas de rendimiento para cada modelo generado independiente del sujeto y métricas de rendimiento medio y dispersión
para cada algoritmo de clasificación. La etapa de entrenamiento se realiza utilizando todos los voluntarios excepto el voluntario probado
en cada modelo generado (datos de prueba no vistos).

SVM KNN ENS

Training Tested ACC AUC Gmean F1 ACC AUC Gmean F1 ACC AUC Gmean F1
Type Volunteers (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD)

V1 65.00% 60.83% 57.15% 47.76% 75.00% 71.25% 68.74% 62.69% 71.00% 65.83% 60.55% 52.46%
V2 70.00% 61.33% 58.83% 42.31% 81.00% 74.00% 72.66% 61.22% 82.00% 86.72% 71.26% 60.87%
V3 64.00% 66.00% 62.44% 40.00% 72.00% 61.88% 59.53% 39.13% 62.00% 61.19% 45.82% 24.00%
V4 82.00% 71.01% 83.88% 59.09% 84.00% 87.84% 87.67% 63.64% 85.00% 91.61% 90.75% 66.67%
V5 64.00% 70.55% 61.10% 55.00% 70.00% 71.74% 65.32% 59.46% 73.00% 75.58% 68.16% 63.01%

Subject V6 84.00% 88.57% 85.61% 77.14% 71.00% 68.81% 68.59% 56.72% 79.00% 87.86% 76.16% 66.67%
independent V7 75.00% 90.54% 65.38% 59.02% 76.00% 91.83% 69.37% 63.63% 87.00% 99.46% 82.16% 80.60%

V8 76.00% 81.90% 70.51% 60.00% 78.00% 72.86% 71.71% 62.07% 80.00% 85.00% 75.59% 66.67%
V9 67.00% 69.67% 63.77% 21.82% 67.00% 59.44% 58.69% 18.87% 78.00% 84.78% 78.88% 42.11%
V10 76.00% 79.63% 65.95% 60.00% 78.00% 72.92% 68.34% 63.33% 77.00% 82.30% 72.80% 67.61%
V11 74.00% 90.53% 76.78% 23.53% 80.00% 89.47% 88.85% 40.00% 74.00% 86.32% 85.22% 27.78%
V12 70.00% 72.05% 64.14% 51.61% 71.00% 66.90% 66.12% 53.97% 72.00% 67.72% 66.73% 54.84%

72.25% 75.22% 67.96% 49.77% 75.25% 74.07% 70.47% 53.73% 76.67% 81.20% 72.84% 56.11%
(5.58) (9.18) (7.48) (12.24) (4.25) (7.82) (6.50) (10.53) (5.22) (9.07) (8.62) (13.22)
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Después de analizar esta tabla, los mejores resultados también los proporcionó ENS,

con las métricas de rendimiento promedio más altas (81,20%, 72,84%, 56,11%) para

el AUC, Gmean y la puntuación F1. Por el contrario, la SVM también proporcionó el

peor rendimiento en general. Cabe destacar las diferencias entre todos los modelos

independientes del sujeto generados. Por ejemplo, el mejor modelo alcanzó una

Gmean de hasta el 90,75% cuando se probó con V4 y se entrenó con el resto de los

voluntarios, y el peor modelo proporcionó una Gmean de hasta el 45,82% cuando

se probó con V3 y se entrenó con el resto de los voluntarios. Este hecho pone de

manifiesto la necesidad de contar con un conjunto de datos más amplio y equilibrado

para hacer frente a estos problemas. En cuanto a la puntuación F1, se observa una

gran variabilidad entre los distintos modelos. Por definición, esta puntuación es una

media armónica ponderada entre la precisión y la recuperación, que deja fuera de

la ecuación a los verdaderos negativos. Este hecho es clave cuando se presenta una

incidencia positiva muy baja, pero una puntuación F1 alta no implica necesariamente

un mejor rendimiento del sistema. Por ejemplo, las matrices de confusión de dos

modelos probados independientes del sujeto para los clasificadores ENS se muestran

en la Figura 4-24 para V4 y V7 con puntuaciones F1 de hasta 66,67% y 80,60%

respectivamente. Basado en la aplicación de reconocimiento de miedo perseguido,

podría ser más conveniente tener una clasificación errónea para el falso-positivo que

sobre el falso-negativo. Por lo tanto, la comparación de la puntuación F1 para

diferentes modelos independientes del sujeto debe ir acompañada de los requisitos y

necesidades de la aplicación. Nótese que los dos ejemplos explicados no mostraron

un rendimiento de clasificación perfecto. El resto de las matrices de confusión para

cada modelo independiente del sujeto generado se proporcionan en [186].
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Figure 4-24: Matrices de confusión para los clasificadores ENS y los voluntarios
probados (datos no vistos) sobre sus respectivos modelos independientes del sujeto:
(a) probado V4, (b) probado V7.

En cuanto a la complejidad temporal y espacial de los modelos empleados, SVM y

KNN ya fueron discutidos en las secciones anteriores. El modelo restante, ENS, es

en realidad un clasificador AdaBoost, que se basa en un único aprendiz fuerte com-

puesto. Este último está formado por diferentes aprendices débiles que, en este caso,

son árboles poco profundos. Así, dos parámetros son esenciales para estimar la com-

plejidad temporal y espacial: el número de árboles y el número máximo de divisiones

por árbol. Por un lado, la complejidad temporal solía definirse por 𝒪(𝑓𝑒𝑎𝑡𝑠 *𝑛𝑡𝑟𝑒𝑒𝑠)

para este tipo de clasificador, donde 𝑓𝑒𝑎𝑡𝑠 es el número de características y 𝑛𝑡𝑟𝑒𝑒𝑠

es el número total de árboles. Nótese que la complejidad temporal de los árboles no

se incluye dentro de la complejidad temporal total de AdaBoost, ya que es insignif-

icante en comparación con el tiempo total. Por otro lado, la complejidad espacial

viene determinada por la cantidad de árboles superficiales entrenados y el número

máximo de divisiones permitidas dentro de cada uno de ellos. Además, también hay

que almacenar los pesos entrenados para los aprendices débiles. En el peor de los

casos, cuando se trata de modelos independientes del sujeto, que son más complejos

que los dependientes del sujeto, el número de árboles utilizados es una cuarta parte

del conjunto de datos de entrenamiento, es decir, aproximadamente 300 árboles de

media (1.200 instancias de entrenamiento), y el número máximo de divisiones permi-

tidas por aprendiz débil es de media diez. Considerando estos valores y el conjunto

total de 48 características, la complejidad temporal estimada alcanza hasta 14400
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operaciones mientras que la complejidad espacial alcanza aproximadamente 13 kB

(300 árboles × 10 splits máximo + 300 pesos entrenados). Nótese que la memo-

ria utilizada en kB se basa en un tipo de datos enteros de 32 bits para todos los

parámetros a almacenar.

Cabe destacar que pueden implementarse y aplicarse otras optimizaciones algorít-

micas de AdaBoost y del árbol, así como otras alternativas de selección de carac-

terísticas, para lograr una menor complejidad temporal, que incluso puede conducir

en algunos casos a un mejor rendimiento de reconocimiento. Aunque la información

redundante no afecta tan negativamente a AdaBoost como a otros clasificadores,

como SVM, la eliminación de la información irrelevante sí afecta y puede suponer

un menor tiempo computacional. De hecho, en la Tabla 4.17 se muestran los re-

sultados para la misma configuración de entrenamiento, validación y prueba que el

caso independiente del sujeto empleando el clasificador AdaBoost, pero cambiando

el método de selección de características a mrMR con 𝐾 = 10. Nótese que esta

técnica también se aplicó al sistema DEAP-b2. Se puede observar que las métri-

cas obtenidas son similares a las presentadas sin selección de características. Sin

embargo, la reducción de 48 a 10 características afecta directamente a la compleji-

dad del tiempo de inferencia. Así, con esta configuración y considerando el mismo

número de árboles en promedio, sólo es necesario realizar 3000 operaciones.

4.3 Discusión y Conclusión
En este capítulo se ha presentado el trabajo realizado para crear un sistema de de-

tección de miedo utilizando conjuntos de datos disponibles públicamente. Parte del

trabajo presentado también está contenido en artículos publicados [181, 183, 186].

A lo largo del diseño de los diferentes sistemas, se han identificado y abordado

inicialmente los procesos esenciales que deben considerarse críticos para una imple-

mentación embebida. Por ejemplo, el principal foco de discusión es la complejidad

temporal y espacial de los modelos resultantes en comparación con sus métricas

de rendimiento. Como se indicó al principio del capítulo, el diseño de un modelo

totalmente independiente del sujeto permitiría la primera generación de una her-

ramienta tecnológica capaz de detectar cualquier emoción basada en el aprendizaje

automático. Esta herramienta puede personalizarse durante la operación con los
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Table 4.17: Métricas de rendimiento para cada modelo generado independiente del
sujeto y métricas de rendimiento medio y dispersión para ENS tras la selección
de características mrMR. La etapa de entrenamiento se realiza utilizando todos
los voluntarios excepto el voluntario probado en cada modelo generado (datos de
prueba no vistos).

ENS

Training Tested ACC AUC Gmean F1
Type Volunteers (MAD) (MAD) (MAD) (MAD)

V1 90.00% 68.42% 59.37% 50.70%
V2 87.27% 87.25% 76.18% 64.15%
V3 87.73% 65.63% 45.00% 23.08%
V4 88.64% 84.55% 84.48% 57.14%
V5 90.45% 86.83% 61.50% 54.55%

Subject V6 92.27% 90.57% 85.22% 78.13%
independent V7 87.27% 95.71% 78.58% 87.02%

(mrMR) V8 90.91% 94.90% 92.38% 87.50%
V9 88.18% 91.56% 81.10% 47.06%
V10 85.00% 97.17% 79.06% 88.89%
V11 85.00% 99.79% 88.85% 33.33%
V12 93.64% 69.62% 53.67% 39.29%

88.86% 86.00% 73.78% 59.24%
(2.16) (9.30) (12.60) (18.25)

datos recogidos del sujeto. Por ejemplo, en el equipo UC3M4Safety, la detección

del miedo en situaciones de Violencia de Género ha sido el germen de este trabajo

de investigación. Los modelos dependientes del sujeto requieren tener suficientes

datos para que los diferentes conjuntos de entrenamiento, validación y prueba sean

estadísticamente significativos. En caso de tener suficiente información de un sujeto

en particular, entonces se puede generar un modelo dependiente del sujeto e incluso

perseguirlo, ya que archiva un mejor rendimiento que un modelo independiente del

sujeto. Sin embargo, en la mayoría de los casos, cuando se trata de aplicaciones de

la vida real, en las que durante el primer momento de despliegue no hay o hay poca

cantidad de datos de ese sujeto en particular, entonces es necesario implementar un

modelo independiente del sujeto.

La tabla 4.19 resume los mejores resultados obtenidos a lo largo de esta parte del

trabajo para el reconocimiento binario de emociones de miedo cuando se trata de un

modelo independiente del sujeto. Como se puede observar, se exploraron diferentes

técnicas de optimización de hiperparámetros, clasificadores y configuración del sis-

tema (con y sin selección de características). En primer lugar, el sistema DEAP-b1

utilizó 21 sujetos, empleó un KNN mediante el uso de una estrategia específica de
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Hold-Out extremo, y logró una Gmean de hasta el 62,00%. La particularidad de

dicho sistema fue que las señales filtradas se consideraron como entradas, ya que no

se aplicó ninguna extracción de características. Por tanto, como ya se ha comentado

en apartados anteriores, este hecho podría llevar a resultados demasiado optimistas.

Nótese que en este sistema no se aplicó ninguna optimización de hiperparámetros

como tal, ya que se utilizaron los valores obtenidos durante el barrido de parámet-

ros para los modelos dependientes del sujeto. Debido a las limitaciones observadas

para el DEAP-b1 en términos de complejidad espacial, se desarrolló el DEAP-b2

con el objetivo de obtener un clasificador más ligero. Este último consideró todo

el conjunto de voluntarios del DEAP a costa de omitir una de las señales fisiológ-

icas (SKT). En este caso, la singularidad se basó en el origen del mapeo binario

del miedo, que se obtuvo directamente del espacio PA en lugar de utilizar el espacio

PAD. Para aumentar el rendimiento del sistema DEAP-b2, la eliminación de los ras-

gos redundantes y la maximización de los relevantes a lo largo de mrMR condujo al

sistema DEAP-b2+, que proporcionó un mejor rendimiento que DEAP-b2 y DEAP-

b1. Así, en este caso, la aplicación de técnicas de selección de características resultó

un paso vital para la mejora del sistema. Sin embargo, la complejidad espacial siguió

siendo la misma. Por último, las limitaciones a las que se enfrentaba el DEAP se

solucionaron utilizando la base de datos MAHNOB. Centrándonos en el clasificador

basado en árboles, desarrollamos dos sistemas, con y sin selección de características.

En este caso, la técnica de prueba CV aplicada fue LOSO, que ofrece una visión no

demasiado optimista del rendimiento del sistema. Así, debido a las características

específicas del clasificador, al aplicar la selección de características logramos métri-

cas similares para Gmean y AUC, y obtuvimos el menor almacenamiento para el

modelo.

161 Jose A. Miranda, Tesis Doctoral



Capítulo 4. Prueba de concepto para clasificar miedo

Table 4.18: Los mejores resultados obtenidos a lo largo del capítulo 4 para el re-
conocimiento de la emoción binaria del miedo cuando se trata de un modelo inde-
pendiente del sujeto.

System DEAP-b1 DEAP-b2 DEAP-b2+ MAHNOB-fear MAHNOB-fear+

Subjects 21 32 32 12 12

Signals PPG, GSR, SKT PPG, GSR PPG, GSR ECG, GSR, SKT ECG, GSR, SKT

Hyp.Opt. - Grid Search Grid Search SMBO SMBO

Classifier KNN SVM-RBF SVM-RBF ENS-AdaBoost ENS-AdaBoost

CV Technique 𝐻𝑜𝑙𝑑−𝑂𝑢𝑡 𝑘 − 𝑓𝑜𝑙𝑑 𝑘 − 𝑓𝑜𝑙𝑑 LOSO LOSO

Space (kB) 48.59 39.06 39.06 13 13

AUC (MAD) - 62.79 (4.72)% 81.60 (8.70)% 81.20 (9.07)% 86.00 (9.30)%

Gmean (MAD) 62.00% 62.62 (4.73)% 81.55 (10.21)% 72.84 (8.62)% 73.78 (12.60)%

Centrándonos en los últimos sistemas propuestos, MAHNOB-fear y MAHNOB-

fear+, hay que tener en cuenta ciertas limitaciones. Por un lado, el enfoque de

segmentación de datos utilizado presenta algunas desventajas cuando se trata de

señales fisiológicas que cambian lentamente. Deberían aplicarse diferentes técnicas

para tener en cuenta las distintas particularidades fisiológicas sin desperdiciar in-

formación. Por ejemplo, en el caso concreto de la RSG, el uso de la segmentación

dinámica de datos y la superposición podría ser una solución válida. Sin embargo,

cuando se trata de dispositivos con recursos limitados, una solución mejor podría ser

llevar un registro de los arranques de las ERSCR y, al detectar los arranques para

las sucesivas ventanas de procesamiento, calcular todas las métricas de las ERSCR.

La principal ventaja de este último método es la independencia de la longitud de la

ventana de procesamiento a costa de almacenar la información de seguimiento de los

ERSCR hasta la finalización de los mismos (offset). Por otro lado, a pesar de utilizar

una técnica de normalización específica (Z-score), se podrían aprovechar otros enfo-

ques. Por ejemplo, ya estamos trabajando en la aplicación de diferentes técnicas de

normalización, como el uso de intervalos de tiempo de recuperación para normalizar

los datos del estímulo relacionado con la emoción y estudiar el efecto para el caso

de uso del miedo analizado. Por último, cabe señalar que los resultados mostrados

están limitados por el tamaño del conjunto de datos considerado (12 sujetos), que es

el punto más débil de este tipo de modelos. Dado que no existe ningún otro conjunto

de datos que se ajuste a nuestro caso de uso, se requiere un conjunto de datos más

grande y mejor para crear un sistema más fiable. Por lo tanto, las limitaciones iden-
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tificadas durante el desarrollo de estos sistemas confirman la pertinencia de crear

un nuevo conjunto de datos centrado en la detección del miedo. Este conjunto de

datos debería incluir algunos hechos clave, como el uso de tecnología de inmersión

emocional, la modificación de la metodología de etiquetado para tener en cuenta

la perspectiva de género, una distribución de estímulos adecuadamente equilibrada

con respecto a las emociones objetivo y un mayor número de participantes. Más

detalles sobre este último hecho y la nueva base de datos UC3M4Safety se recogen

en el capítulo 6.

En cuanto a la comparación con otros trabajos de investigación, la amplia casuística

del problema de reconocimiento de emociones es una tarea desafiante. Esto se debe

a la gran cantidad de técnicas diferentes que se pueden aplicar dentro de la cadena

de procesamiento de datos y la generación del modelo de aprendizaje automático.

Sin embargo, podemos hacer una clara distinción utilizando cinco factores: a) CV

utilizado para la validación y/o prueba, b) el número de sujetos contabilizados, c) el

paradigma de clasificación de la emoción (binario, discreto y / o la detección de la

emoción multidimensional), d) la cantidad y el tipo de señales utilizadas, y e) el uso

de conjuntos de datos disponibles públicamente. Esto último es de gran importancia,

ya que los trabajos basados en bases de datos abiertas pueden compararse directa-

mente sin tener que profundizar en las discusiones sobre las diferencias metodológicas

experimentales. En la tabla 4.19 se enumeran los factores anteriores con respecto a

algunos de los principales trabajos del estado de la técnica que están directamente

relacionados con éste y que han influido en él. A primera vista, observamos una

gran variedad de técnicas, lo que dificulta la comparación. En primer lugar, sólo se

han seleccionado los trabajos de investigación que están directamente relacionados

con la detección del miedo o con la clasificación de las emociones. De hecho, dos

trabajos se basan en la clasificación de emociones discretas, siete de ellos se centran

en la clasificación de arousal y valencia (diferentes niveles) utilizando el modelo PA,

y tres trabajos de investigación clasifican las emociones mediante el modelo PAD. De

estos últimos, dos de ellos [184,185] son los ya revisados en la sección 4.1 que utilizan

nuestro paradigma de binarización del miedo propuesto. En segundo lugar, sólo seis

de los trabajos emplearon una técnica de CV de dejar de lado (sujeto o ensayo).

Los demás aplicaron 𝑘− 𝑓𝑜𝑙𝑑 y Hold-Out, lo que, según la disposición de los datos,

163 Jose A. Miranda, Tesis Doctoral



Capítulo 4. Prueba de concepto para clasificar miedo

puede llevar a resultados demasiado optimistas. Además, independientemente del

paradigma de clasificación de emociones y de la técnica de CV aplicada, la mayoría

de los trabajos no informaron de muchas métricas de rendimiento de aprendizaje

automático, aparte de la precisión. Finalmente, teniendo en cuenta estos aspectos

de contextualización, podemos concluir que las métricas obtenidas están en línea

con el estado del arte.
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Table 4.19: Los trabajos más recientes y principales del estado de la técnica que están directamente relacionados con esta investigación y
que han influido en ella en lo que respecta a la computación afectiva utilizando información fisiológica.

Subjects Signals Classifier CV Emotion Dataset Metrics

Lisetti and Nasoz [208] 14 ECG,GSR,SKT KNN LOO Sadness, anger, fear,
surprise, frustration, amusement own ACC(fear): 85.6%

Chanel et al. [209] 10 BP,EEG,GSR,
PPG,RESP SVM LOSO PA space calm-neutral

vs. positive-excited own ACC: 66.00%

Valenza et al. [167] 35 ECG,GSR,RESP QDA 40-fold CV Five arousal and valence levels own ACC > 90%

Valenza et al. [161] 30 ECG SVM-RBF LOO Two levels arousal and valence own ACC(V):79.00%
ACC(A): 84%

Abadi et al. [145] 30 ECG,EOG,EMG SVM LOTO Two levels arousal,
valence, dominance DECAF ACC(A,V,D):50-60%

Rubin et al. [160] 10 ECG SVM 𝑘 − 𝑓𝑜𝑙𝑑 Binary Panic detection own ACC:73-97%

Rathod et al. [210] 6 GSR,PPG SVM Hold-Out Normal, happy, sad,
fear, anger own ACC < 87.00%

Zhao et al. [211] 15 PPG,GSR,SKT NB,RF,SVM LOSO Four PA quadrant own ACC:76.00%
Marín Morales et al. [79] 60 EEG,ECG SVM LOSO Two levels arousal and valence own ACC:75-82%

Santa Maria Granados et al. [163] 40 ECG,GSR CNN Hold-Out Two levels arousal and valence AMIGOS ACC:71-75%
Miranda et al. [183] 15 PPG,GSR,SKT RF Hold-Out Fear (PAD binarized) DEAP ACC:54.00%

Amani Albraikan et al. [194] 25 GSR,ECG,EEG,
RESP,SKT ENS 𝑘 − 𝑓𝑜𝑙𝑑 Three levels arousal and valence MAHNOB ACC:94.00%

Miranda et al. [181] 32 PPG,GSR SVM 𝑘 − 𝑓𝑜𝑙𝑑 Fear (PA binarized) DEAP ACC:62.80%
Oana Balan et al. [184] 32 EEG and peripheral RF 𝑘 − 𝑓𝑜𝑙𝑑 Fear (our paradigm) DEAP ACC:89.96%

Miranda et al. [186] 12 ECG,GSR,SKT ENS LOSO Fear (PAD binarized) MAHNOB ACC:76.67%
Oana Balan et al. [185] 32 PPG,GSR Boosting 𝑘 − 𝑓𝑜𝑙𝑑 Fear (our paradigm) DEAP ACC:91.70%
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Capı́tulo 5
Un nuevo sistema autónomo de

reconocimiento de emociones: Bindi

Como se indica en el capítulo 1, uno de los principales objetivos de esta investigación

se centra en proporcionar una solución tecnológica inteligente para prevenir y com-

batir la violencia de género. En base a ello, se propone el sistema 5-1. Se trata de un

sistema multimodal autónomo que considera las tecnologías IoT para la detección

de situaciones de riesgo en contextos de violencia de género. En concreto, la parte de

edge-computing del sistema se concibe como una red ciberfísica inteligente capaz de

detectar emociones relacionadas con el miedo. Esto se consigue mediante sensores

inteligentes fisiológicos y físicos (audio y/o voz) que monitorizan continuamente al

usuario. Esta tarea se completa con una fusión de datos multimodal basada en la

niebla dentro de una aplicación ad-hoc para smartphones. Finalmente, en caso de

confirmar una situación de riesgo, se activa una alarma a una red de protección pre-

definida. Además, la información se envía a servidores informáticos específicos en

la nube, que se encargan de almacenar los datos recogidos para posteriores acciones

legales. El diseño de este sistema impulsa la generación de nuevos mecanismos de

prevención y lucha contra la violencia de género.

En este capítulo, en primer lugar, se realiza un estudio detallado sobre los sistemas

y herramientas actuales para prevenir las agresiones violentas de género. Esto se

hace considerando diferentes perspectivas como los dispositivos disponibles en el

mercado, los sistemas de grado de investigación y las herramientas institucionales.

Nótese que este último se centra en las instituciones españolas, debido al liderazgo
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Figure 5-1: Arquitectura simplificada del sistema Bindibasado en las diferentes tec-
nologías del IoT.

mundial de España en este aspecto, tal y como se detalla en el capítulo 1. Además, se

comparan y destacan las diferentes ventajas competitivas tecnológicas de Bindi. A

este análisis le sigue una descripción exhaustiva del sistema Bindi. Así, se abordan

los diferentes diseños de hardware y software dentro del brazalete de Bindi. En

primer lugar, se detalla la arquitectura del sistema, tanto en su diseño como en

su integración. Esto se acompaña de diferentes recomendaciones de integración de

wearables fisiológicos a tener en cuenta para las siguientes versiones del sistema. En

segundo lugar, se informa y explica la actual implementación integrada. Hay que

tener en cuenta que los resultados ofrecidos en este capítulo se han presentado en

diferentes publicaciones [11, 159,183,212].

5.1 Tecnología actual para luchar contra la vio-

lencia de género
El desarrollo de la tecnología a lo largo de los años ha hecho realidad la generación

y aplicación de nuevas herramientas para prevenir la Violencia de Género [9, 22,

23]. Las ventajas de utilizar herramientas tecnológicas para ayudar a combatir este

problema son múltiples:

• Accesibilidad de la protección. La tecnología puede facilitar y acercar el acceso

a la protección de las víctimas.

• Centralización de la información. Diferentes instituciones y/o fuerzas pueden

cooperar hacia un seguimiento conjunto de las circunstancias que rodean a las

víctimas de la violencia de género.

• Recogida de información multimodal. La recopilación de diversas fuentes de in-
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formación puede utilizarse para el análisis de predicción y prevención. Además,

esto permite una mejor comprensión de la situación específica de la víctima.

• Tiempos de respuesta a la acción. Los puntos anteriores afectan directamente

a los tiempos de decisión en la activación de los respectivos mecanismos insti-

tucionales.

• Refuerzo de la seguridad. Desde la perspectiva del usuario, la inclusión de

una tecnología fiable y robusta puede proporcionar una mayor sensación de

seguridad en las víctimas de la violencia de género.

Sin embargo, estas ventajas también van acompañadas de diferentes requisitos, con-

sideraciones y cuestiones abiertas, que pueden resumirse en:

• La pseudoanonimización de los datos almacenados es crucial. Cualquier tec-

nología debe garantizar la protección y seguridad de todos los datos sensibles

o identificables. La gestión y la propiedad de dicha información deben ser

cuidadosamente consideradas. Así, debe garantizarse el estricto cumplimiento

de las leyes de protección de datos. Además, cualquier solución tecnológica

debe garantizar la cadena de custodia de la información recogida para que

pueda ser utilizada posteriormente en cualquier proceso judicial.

• Las herramientas tecnológicas candidatas deben conectar directamente a las

víctimas con profesionales especializados. Esto aboga por: 1) la necesidad

de contar con más profesionales formados para tratar adecuadamente a las

víctimas de la violencia de género, y 2) la elaboración de nuevos protocolos

que tengan como objetivo evitar la revictimización.

• Es de suma importancia la alineación entre las soluciones tecnológicas prop-

uestas, el gobierno y los actores privados. Hay que tener en cuenta que estos

últimos desempeñan un papel fundamental en el desarrollo y la integración de

las soluciones tecnológicas.

• La personalización tecnológica debe considerarse un aspecto esencial, ya que

es muy necesario que la solución tecnológica se adapte y personalice a cada

persona. Esto se debe a la adaptación a diferentes contextos y entornos het-

erogéneos. Sin embargo, esto podría enfrentarse a las limitaciones actuales de

la tecnología para lograr dicha adaptación.

• Accesibilidad a las soluciones de base tecnológica propuestas. Se sabe que
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existe una brecha de género en la posesión de móviles de aproximadamente un

7% en los países de ingresos bajos y medios [213]. Este hecho, acompañado de

los menores ingresos percibidos por las mujeres, hace que el precio objetivo y

la plataforma tecnológica sean factores críticos. El primero está relacionado

con la asequibilidad de la solución, mientras que el segundo se refiere al hecho

de que las soluciones sin necesidad de tecnología de telefonía móvil ayudarían

a que la solución fuera más inclusiva.

Todos estos puntos justifican y fomentan el enfoque multidisciplinar que se reclama

en el capítulo 1 y que es necesario para el diseño, el desarrollo y la integración de

la tecnología que se ocupa de los contextos de la violencia de género. Aunque se

trata de una tarea difícil, uno de los principales objetivos de esta investigación es

proporcionar la base tecnológica necesaria para empezar a resolver estos problemas

y preguntas abiertas. Cabe destacar que cualquier solución de base tecnológica

diseñada y orientada a la casuística de la Violencia de Género puede ayudar a

prevenir y combatir, pero nunca resolverá todo el problema. Eso, es una cuestión

educativa.

Una de las tecnologías más empleadas son las aplicaciones basadas en el teléfono

móvil. Hoy en día, esta tecnología es una de las más aceptadas a pesar de las consid-

eraciones descritas anteriormente. Recientemente, los autores de [214] realizaron una

revisión sistemática de hasta 171 aplicaciones cuyo objetivo era abordar la Violencia

de Género a través de diferentes mecanismos. Independientemente de la aplicación

específica, los autores concluyeron que la mayoría de ellas estaban principalmente

enfocadas y diseñadas para soluciones de emergencia a corto plazo o puntuales.

Este hecho deja de lado la perspectiva de la prevención y ofrece la posibilidad de

identificar únicamente hechos aislados de Violencia de Género en lugar de ofrecer

un seguimiento continuo y el autoempoderamiento de las Víctimas de Violencia de

Género, que debería ser uno de los principales objetivos. Aunque los autores afir-

man que cada vez se incluyen más funciones educativas en las aplicaciones recientes,

es necesario llevar a cabo más investigaciones relacionadas con la seguridad de los

datos, la seguridad personal y la eficacia de dichas soluciones. Un ejemplo de una

de estas aplicaciones es AlertCops [215]. Esta aplicación está promovida específica-

mente por el Ministerio del Interior español y permite notificar al instante cualquier
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tipo de incidencia con las fuerzas del orden. Como característica diferenciadora

respecto a otras aplicaciones existentes, en el último año se ha incorporado a esta

aplicación el "Botón SOS", que permite reforzar la protección de los colectivos vul-

nerables. Este botón envía una alerta urgente al centro policial más cercano junto

con su ubicación Global Positioning System (GPS) y una grabación de audio de

10 segundos de lo que está ocurriendo. Además, esta aplicación también incluye la

función "Guardián", que últimamente han incluido muchas otras aplicaciones. En

concreto, permite compartir la ubicación en tiempo real con los contactos selecciona-

dos por el usuario. Aunque estas aplicaciones pueden explotar con éxito las diversas

capacidades de la tecnología móvil, la toma de decisiones se basa en cualquier caso

únicamente en medidas ambientales o relativas, pero nunca en medidas del propio

usuario.

En este contexto, las partes interesadas del sector privado también han desarrol-

lado herramientas tecnológicas que podrían utilizarse para abordar el caso de uso

comentado. Sin embargo, la mayoría de estas soluciones se incluyen en la categoría

de botones de pánico. Incluso en algunos países, como la India, se emitió una direc-

tiva relacionada con la inclusión obligatoria de un botón de pánico en cada teléfono

móvil vendido a partir de 2017. Una de las soluciones de botón de pánico más desta-

cadas que está pensada específicamente para hacer frente a situaciones de Violencia

de Género es SaferPro de LeafWearables, una empresa india. Se trata de un dis-

positivo de pulsera que viene con una tarjeta de módulo de identidad de abonado

de bajo consumo, lo que lo hace independiente del teléfono móvil. En concreto, una

vez que el usuario pulsa el botón, se envía una alarma a un círculo seleccionado

de respondedores y se inicia una grabación de audio. Sin embargo, los botones de

pánico presentan importantes limitaciones en cuanto a la seguridad de las mujeres:

1) la exigencia de un papel activo en su autoprotección, lo que ciertamente no es

posible bajo algunos tipos de agresión y/o bloqueo de las reacciones emocionales,

2) su falta de diseño discreto que puede provocar estigmas en las usuarias, y 3) la

falta de apoyo de la infraestructura [216]. A pesar de los esfuerzos tecnológicos,

este tipo de enfoque es cuestionado por varios expertos en Violencia de Género [21],

que reclaman, entre otras cosas, una investigación y tecnología más avanzada en

estas soluciones que se consideran anticuadas y un mayor grado de atención al pa-

171 Jose A. Miranda, Tesis Doctoral



Capítulo 5. Un nuevo sistema autónomo de reconocimiento de emociones: Bindi

pel de las víctimas. Además de los botones de pánico, también existen dispositivos

comerciales que, aunque no están exactamente orientados al caso de uso de la Vi-

olencia de Género, permiten generar alarmas de forma automática sobre eventos

anormales internos y externos detectados al usuario. Por ejemplo, el Apple Watch

Series 4 y posteriores proporcionan detección de caídas y envían un SOS a contactos

de emergencia predefinidos en caso de que el usuario no realice ninguna acción. El

brazalete Embrace2 de Empatica es el único wearable de muñeca autorizado por la

FDA para la epilepsia, que activa una alarma en caso de detección de convulsiones.

Esto se hace mediante la monitorización GSR. Además, está equipado con otros

tres sensores (SKT, acelerómetro y giroscopio) que también pueden ser adquiridos y

almacenados con fines médicos. Este último sistema también abre la posibilidad de

considerar el uso de una tecnología de detección similar para abordar la violencia de

género. Entre los dispositivos de detección fisiológica avanzada lanzados reciente-

mente, destacan Fitbit con FitbitSense y Oura con OuraRing. El primero es la única

pulsera inteligente comercial que ofrece más de dos sensores fisiológicos integrados:

GSR, ECG, PPG y SKT. Sin embargo, la actual integración electromecánica de

algunos de estos sensores dificulta la aplicación de este dispositivo a otros casos de

uso. Esto se debe principalmente al hecho de que la adquisición de una medición

de GSR y/o ECG requiere que la mano libre esté encima del brazalete, ya que esto

proporciona un circuito de bucle cerrado. Este último sistema se basa en un anillo

inteligente y proporciona la adquisición de PPG y SKT con una precisión relativa-

mente alta. Sin embargo, hay que tener en cuenta que el nicho de mercado de estos

dispositivos se centra en el bienestar genérico, más que en cualquier otro caso de

uso específico. Hasta donde yo sé, el único dispositivo comercialmente disponible

orientado a proporcionar una herramienta para prevenir una condición específica

relacionada con la fisiología es el mencionado Embrace2. Sin embargo, la prolif-

eración de dispositivos comerciales vestibles con capacidades de detección fisiológica

ha estado en auge en los últimos años y podría beneficiar el diseño y desarrollo de

herramientas orientadas a la aplicación objetivo de esta investigación.

El sector público no ha sido ajeno a los avances tecnológicos. Cuando se trata de la

vigilancia electrónica para ayudar a prevenir la Violencia de Género, España resulta

ser uno de los países pioneros en el mundo en la promoción de este tipo de tecnología.

Jose A. Miranda, Tesis Doctoral 172



5.1. Tecnología actual para luchar contra la violencia de género

De hecho, como ya se repasó en el Capítulo 1, en 2013 se firmó un convenio entre el

Ministerio del Interior, Justicia, Sanidad y Servicios Sociales e Igualdad del Consejo

General del Poder Judicial y la Fiscalía General del Estado por el que se aprobó

el "Protocolo de actuación del sistema de seguimiento por medios telemáticos de

las medidas y sentencias de alejamiento en materia de violencia de género". Estas

medidas obligan al agresor y a la víctima a llevar diferentes dispositivos, Figura 5-2.

Además, todas las diferentes alarmas generadas por el sistema son monitorizadas

y centralizadas por un centro especializado llamado Cometa, gestionado por una

empresa privada (Securitas Direct) subcontratada por el gobierno español. Las

partes interesadas consideradas, así como la centralización de la información que

proporciona este sistema, están en consonancia con las ventajas y los requisitos

anteriores. Sin embargo, en el caso concreto de este sistema, la tecnología empleada

es obsoleta y se basa únicamente en la monitorización GPS, lo que en algunos

casos provoca que el agresor acose aún más a la víctima. Aunque este protocolo y

solución tecnológica han ayudado en la lucha contra la Violencia de Género durante

los últimos años, su tecnología de detección basada en GPS, sumada a su baja

batería y a los fallos intermitentes que se reportan, hacen que esta solución sea muy

limitada.

DLI DLV

Figure 5-2: Dispositivos considerados para el sistema de vigilancia electrónica dentro
del "Protocolo de actuación del sistema de vigilancia por medios telemáticos de las
medidas y penas de alejamiento en materia de violencia de género". DLI: Dispositivo
que lleva el agresor; DLV: Dispositivo que lleva la víctima [9].

En el caso de buscar propuestas en el ámbito académico sobre el diseño de sis-

temas y herramientas para evitar la Violencia de Género, existe literatura [217].

Sin embargo, en cuanto a la mayoría de los dispositivos comerciales, éstos se cen-
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tran en el diseño y optimización de sistemas basados en botones de pánico. Cabe

mencionar que dejando de lado el resultado final físico del wearable, también ex-

iste literatura que aborda directamente la problemática de la Violencia de Género

mediante el aprendizaje automático aplicado a la información centralizada. Por

ejemplo, los autores de [218] utilizaron el aprendizaje automático para diseñar mod-

elos que predijeran con precisión el riesgo de reincidencia de un agresor de violencia

de género. Emplearon 40.000 informes de violencia de género extraídos de VioGen

y superaron el algoritmo de evaluación de riesgo preexistente basado en técnicas

estadísticas clásicas. Aparte de eso, en la literatura faltan propuestas de sistemas

dirigidos a la prevención y lucha contra la Violencia de Género.

De este análisis podemos concluir que ninguna de las soluciones tecnológicas públi-

cas, de investigación o privadas para combatir la Violencia de Género se beneficia de

los avances clave del estado del arte y de la electrónica de consumo actuales, como

la analítica fisiológica y física y la computación afectiva. Estos avances pueden ser

aprovechados para conseguir una herramienta tecnológica de prevención de la Vi-

olencia de Género mejor, autónoma y más discreta, que es el objetivo del equipo

UC3M4Safety mediante el sistema BindiȦdemás, el diseño de una herramienta de

este tipo para la seguridad de las mujeres requiere que éstas sean co-creadoras de

la solución, algo que este equipo está considerando fuertemente mediante una es-

trecha colaboración con diferentes asociaciones de mujeres y grupos de discusión de

mujeres profesionales expertas en la materia. Hasta donde yo sé, Bindi es el único

sistema que propone una herramienta tecnológica para ayudar a prevenir y combatir

la Violencia de Género mediante la informática afectiva [11,183,219,220].

5.2 Bindi
Cronológicamente, Bindi ha pasado por varias fases de diseño y desarrollo, Figura

5-3. La primera prueba de concepto fue el iGlove, que fue una tesis de máster co-

supervisada [221]. La idea de este sistema era diseñar e implementar un primer sis-

tema de monitorización fisiológica continua wearable. En concreto, estaba equipado

con tres sensores fisiológicos (BVP, GSR y SKT) y permitía la transmisión con-

tinua de datos mediante Bluetooth Low Energy (BLE) a un teléfono móvil. Este

dispositivo estaba basado en [222]. Además, el SoC integrado en el iGlove era un
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ARM®Cortex-M0 de 32 bits con 32KB de RAM y 256KB de Flash. Este disposi-

tivo cumplió con éxito su objetivo de crear la primera herramienta para impulsar la

investigación en computación afectiva dentro del equipo UC3M4Safety. Posterior-

mente, se diseñó la primera versión formal de Bindi, Bindi 1.0, utilizando la mayor

parte del hardware de iGlove como sólido punto de partida. Como ya se introdujo al

principio de este capítulo, Bindi 1.0 es un sistema de red de área personal formado

por tres dispositivos: una pulsera, un colgante y una aplicación para smartphone.

En concreto, el SoC integrado dentro de Bindi 1.0 era un ARM®Cortex-M4 de 32

bits con 64KB de RAM y 256KB de Flash. Específicamente para este sistema, fui

responsable de algunas de las principales tareas relacionadas con el brazalete, tales

como 1) la supervisión de los esquemas, Printed Circuit Board (PCB), y el diseño

de la maqueta, 2) el diseño del firmware y la integración del sistema, y 3) la coordi-

nación de las diferentes validaciones y aplicación de bancos de pruebas para asegurar

la funcionalidad. Cabe destacar que, independientemente de estas tareas específicas,

la mayor parte del diseño, integración, implementación y validación se ha realizado

de forma conjunta, ordenada y organizada por un grupo de personas pertenecientes

al equipo de UC3M4Safety. Esta primera versión de Bindi es la que se aborda en este

capítulo. Además, Bindi 1.0 es uno de los sistemas sensoriales empleados durante

la grabación del conjunto de datos WEMAC que se explica en el Capítulo 6. Tras

las diferentes limitaciones identificadas durante el desarrollo y uso de Bindi 1.0, la

UC3M4Safety diseñó Bindi 2.0 durante los dos últimos años. Este nuevo sistema

sufrió un drástico proceso de miniaturización que aprovechó la integración del hard-

ware de Bindi 1.0. Además, en esta nueva versión se han incluido nuevos sensores

y diferentes mejoras de hardware, así como nuevas funcionalidades de firmware. En

este caso, el SoC integrado dentro de Bindi 2.0era un ARM®Cortex-M4 de 32 bits

con 256KB de RAM y 1MB de Flash. Hay que tener en cuenta que, a medida que

se ha ido mejorando la tecnología de Bindi, también han aumentado sus necesidades

computacionales, lo que ha hecho que se necesite más capacidad de almacenamiento

en particular. Sin embargo, este hecho no ha supuesto un aumento considerable en

el consumo de energía si comparamos específicamente Bindi 1.0 y Bindi 2.0 [11,223].
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Sensor de temperatura

Sensor de frecuencia cardiaca

2016-2017 2017-2019 2019-2022

iGlove Bindi 1.0 Bindi 2.0

Figure 5-3: Evolución de la tecnología Bindi desde 2016 hasta 2022.

Una vez abordado el estado del arte de la tecnología aplicada a la lucha contra

la Violencia de Género y el contexto tecnológico de Bindi, los siguientes apartados

se centran en ofrecer una perspectiva integrada sobre los diferentes procesos, técni-

cas y métodos de señalización digital diseñados e implementados en la pulsera de

Bindidurante la evolución de esta investigación. En primer lugar, se presenta un

análisis detallado de la arquitectura de la pulsera, tanto desde el punto de vista

del hardware como del software. En segundo lugar, se evalúan y analizan difer-

entes arquitecturas de filtrado digital integradas, manteniendo un equilibrio entre

los requisitos de recursos y la preservación de la información fisiológica. En tercer

lugar, se detalla una nueva propuesta de sistema SQA para señales PPG, imple-

mentada y evaluada mediante el uso de conjuntos de datos públicos y propios. Este

sistema SQA también informa de las métricas de tiempo y consumo de energía para

diferentes características extraídas. Posteriormente, se presenta una exploración

completa del espacio de diseño de la extracción de características embebidas para

un caso de uso HRV. Aquí se analizan y discuten las técnicas de procesamiento de

datos temporales y de frecuencia. Esto se hace para proporcionar una perspectiva

en profundidad sobre las consideraciones y limitaciones del diseño de la extracción

de características. Además, se presenta y discute una comparación entre las carac-

terísticas basadas en HRV obtenidas con la pulsera y las obtenidas con un kit de

herramientas de investigación. Por último, se presentan las métricas de consumo de
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energía, que proporcionan un análisis exhaustivo de la duración de la batería de la

pulsera.

5.2.1 Arquitectura del sistema
Como se muestra en la Figura 5-4, el brazalete se compone de diferentes elementos

de hardware y software. Estos se pueden clasificar en cuatro grupos: el SoC, los

actuadores, los elementos de gestión de la energía y los sensores fisiológicos. Se

describen como sigue:

• Unidad de microprocesador. Bindi 1.0 está equipado con el SoC nRF52832 que

incluye ARM® Cortex®-M4, una unidad de microcontrolador de ultra bajo

consumo de energía con 512KB de memoria flash y 64KB de RAM, unidad de

punto flotante de precisión única, conjunto de instrucciones Thumb®-2, reloj

de 64MHz, y algunos periféricos integrados (USB, UART, SPI, I2C, I2S, ADC,

PDM, y AES) [224]. Cabe destacar que el módulo de radiofrecuencia a través

de la comunicación Bluetooth Low Energy®(BLE) también está integrado den-

tro de esta unidad host. Además, los diferentes procesos de señalización digital

empleados fueron embebidos en este SoC.

• Actuadores. La pulsera está equipada con un botón electromecánico conven-

cional para la activación manual del usuario, que actúa como botón de pánico.

Adicionalmente, se incluye un zumbador para dar respuesta física a las difer-

entes alarmas del sistema [225].

• Elementos de gestión de la energía. En este caso se utilizan los componentes

BQ2019 y MCP73831 de Texas Instruments y Microchip [226,227]. Estos dos

circuitos integrados se encargan de controlar y cargar la batería, respectiva-

mente. Para el Bindi 1.0se ha empleado una batería de polímero de iones de

litio de 500 𝑚𝐴ℎ de 3,7V.

• Sensores fisiológicos. Tres sensores fisiológicos diferentes están presentes en el

Brazalete: PPG, GSR, y SKT. En la siguiente sección se ofrecen detalles es-

pecíficos, junto con las limitaciones encontradas en cuanto a la implementación

del hardware. Tenga en cuenta que estas últimas se abordaron en las siguientes

versiones de Bindi (Bindi 2.0).
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Figure 5-4: Arquitectura simplificada del brazalete.

Desde el punto de vista del hardware, la mayor parte de los diferentes elemen-

tos del brazalete se basan en sensores inteligentes, microcontroladores y actuadores

disponibles en el mercado. Esta decisión se basó en tres hechos principales 1) facil-

itar todos los procesos de diseño e integración, 2) crear la primera versión wearable

de Bindi con piezas disponibles en el mercado siempre que fuera posible, y 3) reducir

costes al no tener que diseñar muchos de los elementos desde cero. Posteriormente,

esta decisión de diseño nos permitió identificar los inconvenientes y limitaciones ac-

tuales del Commercial-Off-The-Shell (COTS) empleado. Estos aparecerán a lo largo

de las siguientes subsecciones.

5.2.1.1 Diseño e integración de sensores fisiológicos

Esta sección ofrece un análisis en profundidad de los sensores integrados en Bindi

1.0, así como las limitaciones encontradas durante este proceso. Hay que tener en

cuenta que la ubicación corporal de los sensores se vio directamente afectada por la

forma del factor del brazalete, así como por la literatura anterior que demostró las

diferencias fisiológicas [102,228,229].

Sensor cardiovascular

El sensor de frecuencia cardíaca integrado se basa en un sensor fotopletismográfico

que detecta los cambios de BVP mediante la medición de la absorción de la luz emi-

tida a través de la piel, como se estudió en el capítulo 2. Este sensor es el MAX30101

Pulsioxímetro reflexivo de alta sensibilidad, con ADC de 18 bits, comunicación I2C,

cancelación de ruido digital, y diferentes LEDs integrados (rojo -660𝑛𝑚-, verde -
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527𝑛𝑚-, e infrarrojo -880𝑛𝑚-), [10]. Teniendo en cuenta la eficiencia cuántica del

fotodiodo del sensor, figura 5-5, y el voltaje de avance requerido por los diferentes

LEDs, se seleccionó finalmente el LED rojo. Nótese que la eficiencia cuántica de

cualquier fotodiodo o fotodetector se refiere al porcentaje o fracción de fotones ab-

sorbidos o incidentes que contribuyen a la fotocorriente real, es decir, la sensibilidad

esperada del fotodiodo dividida por la fotosensibilidad máxima en caso de que cada

fotón genere un electrón. Además, decidimos utilizar sólo uno de los LEDs para

reducir el consumo de energía y para abrir una nueva línea de investigación sobre

la eliminación de artefactos de movimiento mediante técnicas de separación ciega

de fuentes. Esto último dio lugar a una Tesis de Máster supervisada [230], en la

que se establecieron las bases para el uso de algoritmos de eliminación de artefactos

de movimiento. Cabe destacar que, aunque esto último no entra en el ámbito de

este documento, servirá de base para futuras investigaciones. Entre las capacidades

revisadas de este sensor inteligente, también ofrece una frecuencia de muestreo con-

figurable desde 50 Hz hasta 3,24 kHz, y control de la corriente del LED programable.

En nuestro caso, para las implementaciones embebidas presentadas en este capítulo,

empleamos la corriente máxima del LED (50mA con un ancho de pulso de 411𝜇𝑠)

y una frecuencia de muestreo de 100 Hz. La primera se decidió para proporcionar

una penetración más profunda, lo que derivó en una mayor diferencia de ciclo en-

tre las fases sistólica y diastólica. La frecuencia de muestreo se eligió porque es la

disponible en el sensor que permite una resolución temporal adecuada para extraer

las características deseadas [231]. Una de las principales limitaciones de este sensor

es en realidad su principal ventaja, ya que proporciona una solución integral medi-

ante la integración de diferentes LEDs, pero esto no proporciona flexibilidad para

probar otras configuraciones de LEDs. Esto llevó al equipo de UC3M4Safety a in-

vestigar en diferentes configuraciones de LEDs modificando el entrehierro del sensor

de piel o incluso probando configuraciones de múltiples longitudes de onda [232].

Independientemente de estas últimas investigaciones, este sensor se ha mantenido

para la integración de Bindi 2.0.
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Figure 5-5: Fotodiodo de eficiencia cuántica MAX30101 [10]

Sensor Electrodérmico (GSR)

Para el sensor GSR, se ha implementado una medición exosomática de corriente

continua aplicando un voltaje constante a través de la piel. Además, se han uti-

lizado electrodos de acero seco. Nótese que, en este caso, éste es el único sensor,

de los tres integrados en la Brazalete, que se diseñó en lugar de adquirir un COTS

analógico-front-end o smart-sensor. El diseño de este sensor se basó en el primer

circuito integrado en el iGlove [221]. La figura 5-6 muestra el esquema del front-end

analógico para el sensor de corriente GSR en Bindi 1.0. En concreto, los electrodos

están conectados a 𝐽7, por lo que se realiza una medición del potencial de piel. Esto

se realiza gracias al divisor de tensión entre la piel y 𝑅14. Para evitar las perturba-

ciones endosomáticas, se considera una referencia común a la salida y a la entrada

para que la diferencia de tensión sea independiente de la posición del electrodo de

referencia. En función de la tensión de salida del sensor que se va a medir, se aplica

una tensión de referencia para evitar la saturación utilizando una resistencia vari-

able (𝑅7). Obsérvese que se aplican seguidores de tensión en ambas ramas como

amortiguadores para evitar problemas relacionados con la impedancia. Por último,

se emplea un amplificador diferencial para obtener la diferencia entre la referencia

de tensión conocida y el divisor de tensión de la piel. La amplificación entre estas
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dos tensiones viene dada por la ecuación 5.1:

𝑉𝑂𝑈𝑇 3 = ((𝑅𝑠𝑘𝑖𝑛 −𝑅7) * 2 * 𝑉 𝐶𝐶1.8𝐵 * 2 * 105)
((𝑅7 + 2 * 105) * (𝑅𝑠𝑘𝑖𝑛 + 2 * 105)) . (5.1)

Esta tensión de salida es seguida por un filtro de paso bajo (𝑅11 y 𝐶11) para evitar

el ruido de alta frecuencia con una frecuencia de corte de hasta 1,5 Hz. Hay que tener

en cuenta que la información del GSR se mantiene por debajo de dicha frecuencia,

tal y como se estudia en el capítulo 2. En cuanto al consumo de energía, el propio

sensor consume alrededor de 0,7mA.
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Figure 5-6: Implementación del frente analógico del sensor de GSR en el brazalete
de Bindi.

Una de las principales limitaciones del circuito de adquisición GSR implementado

es el comportamiento no lineal. Las figuras 5-7 y 5-8 muestran la tensión de salida

(𝑉𝑂𝑈𝑇 3) y la corriente inyectada en la piel, respectivamente. Obsérvese que el voltaje

se representa utilizando diferentes valores de 𝑅7, y 𝑅14 se fija en 200 𝑘Ω. Este último

se fijó en ese valor para limitar la corriente inyectada por debajo de los límites

recomendados de 10𝜇𝐴/𝑐𝑚2 para los requisitos de seguridad [120]. Siguiendo un

compromiso entre la sensibilidad y un rango deseado de hasta 0-20 𝜇𝑆, decidimos

fijar la resistencia variable en 50𝑘Ω. Así, considerando una resolución de muestreo

de 14 bits (ADC), el LSB es de hasta 219𝜇𝑉 , y la peor resolución de conductancia del

sensor es de 0,007𝜇𝑆. Esta resolución es suficiente para capturar cambios de 0,01𝜇𝑆

para registrar correctamente todos los SCRs. Tenga en cuenta que, suponiendo un
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error de cuantificación máximo de LSB/2, para este caso que lleva hasta ± 0,003𝜇𝑆.
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Figure 5-7: Respuesta GSR de Bindi considerando diferentes resistencias de la piel.
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Figure 5-8: Respuesta no lineal de la corriente de piel dada por el divisor de tensión
entre 𝑅14 y 𝑅𝑠𝑘𝑖𝑛.

Este sensor fue validado empíricamente con éxito utilizando componentes pasivos

(resistencias) en [221]. Además, debido a la complejidad para generar un modelo de

piel adecuado [233], decidimos utilizar un sensor GSR de grado de investigación y

un conjunto reducido de voluntarios para validar una medición GSR real [234]. En

estos experimentos, nuestro sensor GSR se colocó en la parte distal del antebrazo

debido al factor de forma Brazalete, mientras que el sensor GSR de validación se

situó en la palma de la mano. Se sabe que en esta última localización se encuentra

la mayor densidad de glándulas sudoríparas del cuerpo [112], lo que implica una

señal más sensible a los afectos. Además, Bindi trabaja a base de electrodos secos,
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mientras que el sensor de validación utiliza electrodos de hidrogel, véase la figura

2-15. Este hecho es clave a la hora de comparar las señales, ya que el hidrogel mejora

la calidad de la señal al disminuir la impedancia que existe en la interfaz electrodo-

piel. La figura 5-9 muestra las señales GSR normalizadas obtenidas por ambos

dispositivos para un voluntario durante dos ensayos diferentes. La línea vertical de

guiones en la figura marca la separación de estímulos, donde el primer y segundo

estímulo son la alegría y el miedo, respectivamente. Al analizar la correlación de las

señales adquiridas por ambos sensores, se obtiene una métrica de Pearson de 0,85,

lo que denota una fuerte correlación positiva directa. Se obtuvieron coeficientes de

correlación similares para el resto de los voluntarios. Se aprecian diferencias entre

ambas señales, que pueden deberse a los artefactos de movimiento del sensor, a los

efectos del hidrogel y a la ubicación del sensor. Además, la mayoría de los SCRs

captados por el sensor de validación están presentes en la señal de Bindi. Por lo

tanto, concluimos que la validación del sensor fue exitosa.
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Figure 5-9: Señales filtradas normalizadas del sensor de GSR obtenidas por Bindi
y el sensor de validación para un voluntario en dos estímulos. La línea vertical de
guiones denota la separación de estímulos.

Las limitaciones encontradas durante el desarrollo e integración de este sensor GSR

hicieron que el equipo de UC3M4Safety trabajara en un nuevo sensor que aborda la

respuesta no lineal y posee un hardware ajustable e independiente del sujeto. Esto

hace que el nuevo sistema de sensores sea capaz de ajustar su hardware en función de
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la línea de base detectada o de cualquier otro parámetro individual basado en el GSR

para asegurar la sensibilidad recomendada sin exceder los límites de recomendación

de la densidad actual. Esto se está probando actualmente y se está publicando [235].

Sensor de temperatura de la piel

Por último, se propone el componente MAX30205 para adquirir una medición fiable

de la temperatura de la piel [236]. Este circuito integrado se define como un sensor

de grado clínico para aplicaciones vestibles, proporcionando una precisión de ±0.1 ∘C

en un rango de temperatura de 30 ∘C a 50 ∘C. Integra comunicación I2C y un ADC

de alta resolución, sigma-delta, de 16 bits. Además, cuando está en modo activo,

consume alrededor de 0,6𝑚𝐴.

Como se indica en el capítulo 2, la medición de la temperatura de la piel es un

indicador robusto para caracterizar el proceso de homeostasis del cuerpo. Aunque el

uso de sensores de temperatura de contacto es sencillo siempre que se disponga de la

superficie de contacto (piel), la adquisición de mediciones precisas de dicha variable

es una tarea difícil debido a las diferentes variables y condiciones de configuración.

Esto se refiere a consideraciones como la homogeneidad de la piel, la resistencia

térmica de contacto y la eficacia de la fijación, entre otras [139]. En concreto, el

MAX30205 mide la temperatura de su propia matriz por la vía térmica entre ésta y

la PCB. Por lo tanto, la temperatura medida se adquiere a través de los conductores

y la almohadilla expuesta. En este contexto, y teniendo en cuenta la forma factorial

del ,̧ decidimos integrar este sensor dentro de la PCB, justo debajo del sensor PPG,

Figura 5-10. A pesar de que el fabricante en la hoja de datos afirma que los errores

de temperatura debidos al autocalentamiento son bajos debido a la baja corriente de

alimentación mínima, también se especifica que se requiere un período de muestreo

≥ 10-segundos para evitar completamente estos efectos. Así pues, el principio de

medición del sensor junto con la implementación de la PCB no resultó ser el más

preciso para adquirir la temperatura corporal de la piel ni el más eficiente para evitar

los problemas de autocalentamiento, masa térmica y/o conductividad térmica. La

consecuencia de este problema fue un gradiente térmico inicial que dura alrededor

de 200 segundos hasta que la masa térmica de la PCB está en equilibrio. Por

ejemplo, la figura 5-11 muestra la salida filtrada del sensor tras colocar un dedo

sobre el chip integrado en condiciones de temperatura ambiente controlada. Este
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problema se resolvió para las siguientes versiones de Bindi (Bindi 2.0), así como

para los experimentos realizados y explicados en el 6, considerando la integración

del sensor de temperatura MAX30208 [237]. Este sensor fue la siguiente versión

del MAX30205, incluyendo las mismas capacidades digitales, pero cambiando el

principio de medición y el consumo de energía en modo de funcionamiento. En

concreto, mide a lo largo del contacto superior del paquete en lugar de utilizar una

almohadilla térmica, y consume alrededor de 70𝜇𝐴 cuando adquiere. Obsérvese que

el consumo de energía es considerablemente menor en comparación con el sensor

anterior. La figura 5-12 muestra la modificación realizada al Brazalete para incluir

el nuevo sensor de temperatura y una comparación del experimento para ambos.

Hay que tener en cuenta que hemos utilizado parte de la placa de evaluación del

MAX30208 [238]. El experimento realizado consistió en tres fases: 1) los sensores se

dejaron en el exterior durante 1 hora (noviembre, 14ºC), 2) el sistema se encendió y

comenzó a medir justo después de entrar en la habitación, 3) se realizó el contacto con

la piel para ambos sensores después de estar tres minutos midiendo a temperatura

ambiente, y 4) se liberó el contacto con la piel después de un minuto. Así, podemos

observar como la respuesta del MAX30208 es más rápida que la del MAX30205,

concretamente dos veces más rápida, y como el principio de medición y la masa

térmica de la PCB están afectando a la hora de alcanzar una medición precisa.

Además, también se observa un desfase entre ambos, que también se debe a los

factores comentados. A pesar de los problemas encontrados con la integración del

MAX30205 y aunque existe un desfase con respecto al MAX30208, las medidas

obtenidas del primero son válidas una vez que el transitorio térmico inicial de la

PCB ha finalizado.

5.2.1.2 Diseño de procesamiento digital de señales

El firmware diseñado para Bindi aprovechó las funcionalidades o Software-Development-

Kit (SDK) proporcionadas por el fabricante del microcontrolador, en este caso

Nordic Semiconductors®. La figura 5-13 representa una estructura simplificada

para la pila incrustada en el Brazalete. Cada parte se describe como sigue:

• Elemento nRF HAL. Forma parte del SDK de Nordic. En concreto, es el

Hardware Abstraction Layer (HAL) para las diferentes funcionalidades de bajo

nivel del sistema, incluyendo la interfaz directa con el núcleo ARM® los per-
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Figure 5-10: Integración de los sensores de temperatura de la piel (círculo amarillo)
y de frecuencia cardíaca en la pulsera. La zona gris determina el plano de tierra.
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Figure 5-11: Salida filtrada del MAX30205 tras colocar un dedo sobre el chip inte-
grado en condiciones de temperatura ambiente controlada.
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Figure 5-12: Modificación realizada al Brazalete para incluir el MAX30208 y com-
paración del experimento para ambos sensores de temperatura. A la derecha parte
de la placa de evaluación del MAX30208.
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iféricos y la radio, entre otros.

• BINDI BLE. Se trata de un sistema gestor ad-hoc que maneja las diferentes

colas de transmisión y recepción de radio, realiza el formateo de los paquetes

BLE, y gestiona la interacción directa con el softdevice. Nótese que esta última

es la pila BLE que se está empleando, que en Bindi 1.0 es la S132 [239] que se

basa en BLE 5.1 calificado.

• SYSTEM INIT. Es la parte encargada de gestionar todos los procesos de ini-

cialización relativos a la solicitud de configuración de los periféricos necesarios,

así como de la configuración inicial general de los GPIO.

• BINDI HAL. Es una de las partes principales de la pila. Se trata de un HAL

ad-hoc a nivel de periféricos, que está específicamente destinado a gestionar

todas las diferentes interacciones Bindirelacionadas con los periféricos, realiza

la gestión de la adquisición en bruto, lleva a cabo las primeras etapas de filtrado

inicial, y procede a segmentar los datos y almacenar los búferes procesados para

ser procesados posteriormente por la capa BINDI APP. Además, también se

ocupa de la interacción de los actuadores, es decir, de encender y apagar el

motor vibrador y de recibir las interrupciones del botón de pánico.

• BINDI APP. Esta capa se encarga de las principales funcionalidades a nivel

de sistema, como la gestión de los datos fisiológicos procesados, la extracción

de características, el procesamiento principal de la señal digital (DSP) y la

clasificación.

• Aplicación de Usuario. Las funcionalidades anteriores a nivel de sistema son

manejadas y sincronizadas por una máquina de estado finito (FSM) que reside

en esta capa y es modificada de acuerdo a la aplicación específica del usuario.

• CMS Task Handler. Se trata de una funcionalidad cruzada que puede interac-

tuar con toda la pila. Se utiliza sobre todo para decodificar todos los paquetes

recibidos (BLE) y desencadenar la respectiva acción requerida en relación con

partes específicas de la pila. Esta herramienta también se utiliza para depurar

cuando se está en modo de desarrollo.

Teniendo en cuenta las cadenas de procesamiento de datos y siguiendo la seg-

mentación de datos adoptada al tratar el último sistema de detección de miedo

propuesto en la Sección 4.2, la Figura 5-14 muestra los diferentes procesos de tem-
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Figure 5-13: Pila actual del firmware del brazalete de Bindi.

porización que se realizan dentro del Brazalete. Con el fin de reducir las operaciones

del host y el uso de periféricos internos, en lugar de emplear temporizadores inde-

pendientes para cada una de las señales fisiológicas, hacemos uso de los tiempos

proporcionados por el sensor inteligente PPG. Esto se hace porque este sensor es

el que tiene la mayor frecuencia de muestreo, 100𝐻𝑧, mientras que el GSR y el

SKT trabajan a 10𝐻𝑧 y 5𝐻𝑧 respectivamente. Así, cada vez que se escribe una

nueva muestra del sensor PPG en el buffer BVP, se comprueba si es el momento de

muestrear el resto del sensor de forma sincronizada. Este esquema de adquisición

fisiológica se repite cada segundo y permite evitar cualquier cálculo complejo de

sincronización o deriva temporal. Además, las muestras adquiridas para cada señal

están separadas uniformemente. Nótese que esto último es crucial para aplicar cor-

rectamente diferentes procesos DSP, como las FFT. Los datos adquiridos se filtran

y se almacenan en búferes de 20 segundos, que luego son alimentados a los módulos

de extracción y clasificación de características. En la figura 5-14 también se muestra

el esquema del proceso de superposición. Una de las principales limitaciones de este

esquema de adquisición es la total dependencia del PPGsensor inteligente, ya que,

en caso de fallo del sensor, todo el sistema se ve comprometido. Actualmente se es-

tán realizando diferentes trabajos para implementar y proporcionar un esquema de

medición flexible capaz de hacer frente a eventos de mal funcionamiento. Además,
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se está investigando la integración de pruebas en línea dentro del Brazalete para

evaluar estos casos [240].
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Figure 5-14: Sincronización fisiológica actual y tiempos de procesamiento de datos
en el Brazalete.

En el caso de especificar cada uno de los diferentes procesos digitales embebidos

que se realizan dentro de cada ventana temporal (20 segundos) y para cada sensor, la

Figura 5-15 muestra parte de la arquitectura actual del sistema Brazalete centrada

en el flujo de datos a lo largo de dichos procesos principales. Como ya se ha dicho,

cada cadena de procesamiento de datos comienza con la recopilación de los datos

del sensor respectivo utilizando la adquisición I2C o ADC. Después, los datos son

filtrados y se realiza la segmentación (windowing). Algunas de las arquitecturas de

filtrado integradas evaluadas e implementadas se explican en la sección 5.2.2. En

este punto, los sensores siguen diferentes caminos. Por ejemplo, la implementación

actual con respecto a los datos BVP se somete a un proceso de evaluación de la

calidad empleando un sistema SQA, que se detalla en la Sección 5.2.3. En este

punto, se aplican diferentes algoritmos de eliminación de artefactos de movimiento
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para recuperar la mayor parte de la información de la señal si es necesario. Hay

que tener en cuenta que estos algoritmos se están desarrollando en la actualidad y,

aunque se representan en esta arquitectura, aún no están totalmente implementados.

A continuación, se extraen las características de los datos filtrados y segmentados.

Centrándonos en la cadena de procesamiento de datos PPG, la sección 5.2.4 detalla

algunos de los procesos implicados durante la extracción de características para BVP

métricas relacionadas. Por último, las características obtenidas se introducen en el

motor de inferencia y la etiqueta resultante se transmite de forma inalámbrica a

la APP. Cabe señalar aquí que, aunque en las siguientes secciones se analizan en

profundidad algunos de estos procesos digitales, la implementación integrada de to-

das las cadenas de procesamiento de datos, incluido el bloque de inferencia, es un

trabajo actualmente en curso. Por ejemplo, en [183], propusimos una cadena de

procesamiento de datos totalmente embebida, desde la adquisición hasta la clasifi-

cación embebida, considerando el valor medio de cada variable para una ventana

temporal de 10 segundos como etapas de filtrado y extracción de características.

Implementamos un KNN ligero y aplicamos el aprendizaje sensible a los costes para

entrenar y desplegar un sistema dependiente del sujeto. Este sistema fue una prueba

de concepto inicial y sirvió de base para empezar a diseñar y mejorar la siguiente

versión. Por este motivo, la discusión de la integración de cualquier clasificador in-

tegrado queda fuera del alcance de este documento y será objeto de la investigación

que surja de este trabajo. Del mismo modo, la integración de la eliminación de

artefactos de movimiento también queda fuera del ámbito de esta investigación.
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Figure 5-15: Arquitectura actual del sistema para las principales tareas de proce-
samiento digital del Brazalete.
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5.2.2 Evaluación del filtrado integrado
En esta sección, se realiza una evaluación de filtrado incrustado para una etapa

de filtrado basada en PPG. Este análisis se extrae de [159]. Teniendo en cuenta

la limitación de recursos de Bindi, se han evaluado cinco parámetros cruciales para

las diferentes arquitecturas de filtrado consideradas: el uso de memoria, el tiempo

de cálculo de la ventana, el tiempo de asentamiento, la atenuación media en la

banda de parada y el ripple de paso de banda. Los dos primeros parámetros son los

que están directamente relacionados con la implementación del filtro integrado. El

tiempo de cálculo también está limitado por los tiempos definidos por la aplicación.

El resto de los parámetros están relacionados con las características de filtrado. Por

ejemplo, el tiempo de asentamiento es especialmente relevante y denota el tiempo

de estabilización del filtro, lo que podría estar relacionado con la pérdida de tiempo

y de memoria. La atenuación media en la banda de parada está relacionada con

el nivel medio de atenuación con la banda de rechazo designada, mientras que la

ondulación de paso de banda es la cantidad de variación en la ganancia dentro del

ancho de banda designado del filtro.

Desde una perspectiva embebida o digital, como ya se revisó en el capítulo 4,

hay dos técnicas de filtrado comúnmente aplicadas: IIRs y FIRs. Los IIR son

computacionalmente rápidos, aunque no tienen una respuesta de fase lineal, lo que

podría llevar a no preservar la forma de la onda o la morfología fisiológica. Por

ejemplo, este hecho puede dar lugar a que los algoritmos de detección de picos BVP

identifiquen puntos erróneos. Esta desventaja se alivia utilizando una técnica de

filtrado IIR hacia delante y hacia atrás, que requiere un doble filtrado y una doble

inversión temporal de la señal. Esta última técnica conlleva un elevado tiempo

de cálculo a costa de obtener una función de transferencia de fase cero. Por el

contrario, los filtros FIR pueden diseñarse para tener una respuesta de fase lineal,

preservando así la morfología fisiológica y no afectando a posibles patrones. Sin

embargo, requieren más coeficientes y memoria que los IIR. Estas y otras técnicas

digitales se utilizan para hacer frente a los ruidos fuera de banda, como la oscilación

de la línea de base y el ruido de alta frecuencia. En el caso de una señal BVP, el

rechazo de estos ruidos es clave para minimizar adecuadamente los cambios en su

morfología que no tienen un origen cardíaco.
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Las cuatro opciones de diseño de filtros consideradas son: tres filtros FIR pasa-

banda con diferentes órdenes y un filtro de dos etapas basado en el promedio móvil.

Por un lado, los coeficientes resultantes se cuantificaron a un entero de 14 bits para

reducir el uso de memoria y aumentar el tiempo de procesamiento. Este número de

bits es la máxima precisión que garantiza que no haya desbordamiento en nuestro

sistema, con señales BVP de 18 𝑏𝑖𝑡/𝑚𝑢𝑒𝑠𝑡𝑟𝑎 y registros de 32 bits. El impacto de la

respuesta en frecuencia es mínimo y la desviación cuadrática de la raíz de la salida

en comparación con los coeficientes de punto flotante de 64 bits es insignificante.

Por otro lado, el filtro de dos etapas se compone de dos pasos de promedio móvil.

El primero es un filtro de paso bajo de 4 muestras, mientras que el segundo es la

sustracción de la señal de los 100 valores, media móvil centrada.

En la tabla 5.1 se muestran los resultados obtenidos para las arquitecturas de

filtrado embebidas evaluadas. Analizando esta tabla, podemos observar que, para

los filtros pasa-banda, el aumento del orden del filtro (el número de coeficientes)

aumenta la atenuación media de la banda de parada, pero también el uso de memoria

ROM, el tiempo de cálculo y el tiempo de establecimiento. El tiempo de cálculo de

estos filtros pasa-banda podría reducirse si los coeficientes se almacenan en la RAM

a expensas del uso de la memoria. Obsérvese que el tiempo de cálculo del filtro de

dos etapas es significativamente menor que el de los filtros pasa-banda.

En cuanto a la atenuación de la banda de parada, este parámetro beneficia a

los filtros pasa-banda, proporcionando una mayor atenuación en toda la banda de

parada. Obsérvese que la relación más eficiente de atenuación en la banda de parada

frente al uso de memoria de la ROM se alcanza con el filtro pasa-banda de coeficiente

400, debido al efecto de tamaño de código constante. Centrándonos en el ripple

de paso de banda, se desea un valor bajo para evitar la deformación de la señal.

En el caso de las arquitecturas de filtrado propuestas, el ripple de paso de banda

de los filtros no provoca ninguna distorsión en la señal. En cuanto al tiempo de

asentamiento, la diferencia entre los filtros de dos etapas y los de paso de banda es

grande, lo que beneficia a estos últimos.

En general, a partir de todo este análisis, se recomienda el filtro de dos etapas.

Este posee un buen equilibrio entre el tiempo de cálculo, la atenuación y el uso de

memoria para un sistema portátil limitado como Bindi. Aparte de estas decisiones
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Table 5.1: Resultados obtenidos para las arquitecturas de filtrado integradas evalu-
adas.

Diseño Tiempo. RAM ROM Set. Time Media Banda parada Paso banda
Opciones Cómputo [ms] [bytes] [bytes] [samples] att. [dB] ripple [dB]
400-coef 0.2474 10 626 400 -38.8 0.09
200-coef 0.1240 10 426 200 -25 0.64
100-coef 0.0623 10 326 100 -14.9 3.09
2-stage 0.0048 20 470 4 -9.3 1.93

de diseño respaldadas por estas métricas, cabe señalar que, desde un punto de vista

fisiológico, el número de coeficientes asociados al tiempo de asentamiento puede

afectar negativamente a la monitorización fisiológica. Este hecho está motivado por

el número de muestras que hay que extraer para cada arquitectura considerada, lo

que afecta negativamente a la cantidad final de información fisiológica de la que

extraer las diferentes características. Nótese que, aunque nos centramos únicamente

en esta señal, algunas de las conclusiones extraídas pueden ser extrapoladas para

las otras dos etapas de filtrado que se abordan dentro del sistema (GSR y SKT).

5.2.3 Signal Quality Assessment
SQA es un proceso clave para la monitorización fisiológica continua y fiable [241].

En concreto, este tipo de procesos benefician en gran medida a Bindi ya que se

centran en la evaluación de la calidad de la señal mediante diferentes características

extraídas de la misma y la regla de decisión. Así, estos sistemas proporcionan

una medida de la calidad de la señal segmentada que se procesa. Nótese que este

sistema no se ocupa de ninguna tarea de eliminación de artefactos de movimiento o

similares. Esta salida de calidad de la señal puede ser utilizada posteriormente por

los diferentes algoritmos de extracción de características o incluso por el aprendizaje

automático del miedo para ajustar o ponderar adecuadamente la calidad de dicha

instancia temporal. En cuanto a sus diferentes etapas, está formado por hasta tres

procesos principales:

• La primera es la etapa de extracción de características o indicadores de calidad

de la señal (SQI). Se extraen diferentes SQI del segmento de la señal para car-

acterizarlo adecuadamente. Hay que tener en cuenta que las características o

SQIs adecuados son los que cambian entre los segmentos limpios y los ruidosos

de la señal.

• Siguiendo el proceso anterior, las características extraídas se evalúan en base
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a diferentes reglas de decisión para cuantificar el nivel de ruido.

• El resultado de esta última etapa es el índice de calidad de la señal (SQi), que

en la mayoría de los casos es de base binaria. Cuando se utilizan diferentes

fuentes de la misma señal o incluso diferentes señales, se realiza una tercera

etapa de fusión de datos. En dicha etapa, los SQis individuales se combinan

para obtener la métrica de calidad final.

Hay que tener en cuenta que el proceso de filtrado y la segmentación de datos

de la señal no están dentro del ámbito de las tareas del SQA; sin embargo, es

necesario filtrar y segmentar la señal antes de la aplicación del SQA. Al igual que

en la anterior evaluación de filtrado embebido, el sistema SQA presentado, [212],

también se centra en las señales PPG debido a su relevancia e importancia dentro

de Bindi. Cabe destacar que el trabajo presentado en esta sección es el resultado de

una colaboración internacional con la Universidad de Essex [212].

En la literatura, la mayoría de los métodos de incrustación de recursos bajos prop-

uestos por PPG SQA comparten las siguientes características:

• Se basan en reglas de decisión con umbrales duros para evaluar el SQi. Esta

metodología obvia la alta incertidumbre como resultado de las diferencias entre

sujetos o intra-sujetos, como los niveles de ruido variables a través del tiempo.

• Consideran una gran cantidad de datos de entrenamiento o de ajuste de umbral

utilizando una combinación de diferentes conjuntos de datos. Sin embargo, el

número real de conjuntos de datos públicos que contienen anotaciones sobre

la calidad de la señal es escaso, lo que obliga a los investigadores a etiquetar

los datos utilizados.

• Los sistemas propuestos se adaptan al conjunto de datos específicamente eti-

quetados, lo que da lugar a un sistema dependiente del experimento que difi-

culta la consecución de una generalización suficiente para hacer frente a difer-

entes escenarios experimentales.

Siendo conscientes de que la generación de conjuntos de datos anotados es una tarea

difícil, se podría aprovechar una validación o un ajuste de consideración de pocos

disparos junto con un autoajuste posterior en línea para el diseño de sistemas het-

erogéneos que puedan hacer frente a la baja cantidad de datos anotados disponibles.

Hay que tener en cuenta que este tipo de perspectiva de diseño también puede apli-
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carse a los sistemas que se espera que sean entrenados o ajustados en base a los

datos en la naturaleza y a las anotaciones diarias de los voluntarios, ya que en estos

experimentos se espera que las anotaciones recogidas sean escasas. Además, son

escasas las investigaciones anteriores que hayan realizado una implementación in-

tegrada de SQA y hayan presentado diferentes compensaciones a tener en cuenta en

el diseño. Sobre esta base, en esta sección se presenta un novedoso sistema de SQA

integrado e invariante del sujeto que utiliza un conjunto reducido de características

combinado con un sistema basado en reglas difusas de intervalo (FRBS). Este sis-

tema es el actual SQA que se ejecuta en el Brazalete. En concreto, para hacer frente

a la generalización y el ajuste del SQA procedentes de la amplia casuística de la

señal PPG, se implementa un sistema difuso de tipo 2, ya que proporciona un mejor

marco de incertidumbre para su aprovechamiento. Además, se propone y aplica una

etapa de ajuste fino adaptativo para autoajustar el FRBS de forma online, lo que

proporciona una adaptación agnóstica al usuario.

Centrándonos en la etapa de extracción del SQI para los sensores PPG, existe

una clara división entre las metodologías en el dominio del tiempo y en el dominio

de la frecuencia. Las primeras representan las técnicas más comunes utilizadas en

los sistemas PPG-SQA en la literatura. Por ejemplo, en [242] se estudió el com-

portamiento estadístico de diferentes SQIs basados en la tendencia. En concreto, se

probaron siete indicadores (perfusión, kurtosis, asimetría, potencia relativa, relación

señal/ruido, cruces de cero y entropía) utilizando 160 registros de 60 segundos cada

uno, un total de 9600 segundos. En los resultados presentados, skewness superó a

los demás SQIs al conseguir una puntuación F1 de hasta el 87,20% en la detección

de pulsos aceptables y no aceptables. Esta publicación definió tres niveles diferentes

de calidad en lugar de la habitual clasificación binaria. Independientemente de la

ventaja que supone la baja complejidad computacional de estos SQIs basados en

tendencias, el diseño de un SQA basado pura y exclusivamente en estas métricas

queda expuesto a las reglas de decisión heurísticas con umbrales duros. En cuanto

a los sistemas de SQA basados en la extracción de características en el dominio

de la frecuencia, Krishnan et al. en [243] utilizaron el espectro de la asimetría de

la señal (bi-espectro) para explotar las relaciones de fase que existen en una señal

PPG limpia. Estos métodos implican un alto esfuerzo computacional en compara-
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ción con otros basados en el dominio del tiempo que no requieren realizar algoritmos

de Transformada Rápida de Fourier (FFT) ni ninguna transformación de bases. Por

otra parte, el desarrollo de algoritmos de aprendizaje profundo y de máquina ha

dado lugar a sistemas de clasificación que detectan automáticamente las diferentes

anomalías dentro de la señal PPG de una manera más robusta [244]. Sin embargo,

no están libres de reglas de decisión determinadas empíricamente, y el enfoque de

aprendizaje profundo dificulta una implementación óptima integrada.

Centrándonos en los sistemas de SQA propuestos en la literatura que fueron embe-

bidos, podemos destacar tres trabajos recientes. En [245], Vadrevu et al. propusieron

uno de los primeros sistemas PPG SQA en tiempo real mediante la extracción de car-

acterísticas en el dominio del tiempo. Aplicaron seis reglas heurísticas predefinidas

para evaluar la calidad de la señal y utilizaron un microcontrolador ARM Cortex-M3

de 32 bits. Combinaron dos bases de datos públicas diferentes de PPG de referencia

con su propio conjunto de datos. Esta combinación de datos se utilizó tanto para

el ajuste del umbral como para la validación del rendimiento. Finalmente, lograron

hasta un 95,93% de precisión global. Aunque mostraron datos de consumo de en-

ergía competitivos en relación con el efecto de la disminución de la retención de datos

y la implementación integrada de SQA, su sistema seguía estando sujeto al ajuste

empírico del umbral. Este hecho adaptó el sistema propuesto a ese conjunto especí-

fico de umbrales estimados. Además, no realizaron ninguna prueba ciega. De forma

similar, en [246], Reddy et al. propusieron el uso de características en el dominio

del tiempo con un conjunto de reglas y umbrales empíricos. También combinaron

diferentes bases de datos públicas de PPG de referencia, pero las dividieron en dos

conjuntos de datos. Uno de ellos se utilizó para el ajuste de umbrales y el otro para

las pruebas. Implementaron el sistema en el mismo microcontrolador que Vadrevu

et al. y lograron una precisión global del 93,21%. Por último, en [247], Samiul Alam

et al. emplearon la función de Kurtosis y autocorrelación con umbrales empíricos

también. Siguieron la misma disposición del conjunto de datos que Reddy et al.,

y lograron hasta un 96,50% de precisión global. Además de verse afectados por la

misma consideración de adaptación empírica comentada, utilizaron una plataforma

integrada de alto rendimiento (ARM Cortex-A53 de cuatro núcleos). Esto último

dificulta la tarea de comparación con un contexto extremo de edge-computing que
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tiene que ver con los dispositivos wearables. Entre las ventajas y desventajas comen-

tadas de estos sistemas, cabe destacar dos factores. En primer lugar, el conjunto

completo de características utilizadas en estos trabajos era específico del dominio,

lo que requiere un cierto conocimiento previo de la naturaleza del tipo de ruido que

debe detectarse. En segundo lugar, todos los sistemas propuestos se ajustaron o

entrenaron utilizando el mismo conjunto de datos o parte de una combinación de

diferentes conjuntos de datos. Este último hecho es especialmente relevante debido

al reto de heterogeneidad detallado anteriormente, ya que conseguir un sistema SQA

aplicable a un amplio abanico de situaciones y actividades de la vida real requiere

no sólo tener en cuenta a diferentes voluntarios sino también realizar pruebas ciegas

con diferentes bases de datos.

Después de haber revisado los sistemas de SQA para la monitorización de PPG,

podemos concluir que no existe un conjunto común general de técnicas para tratar

este problema, sino diferentes metodologías de dominio e incluso la combinación

de las mismas. Además, independientemente de la naturaleza de dichas técnicas

de extracción de características o de los algoritmos de clasificación, los sistemas

presentados en la literatura recurren a enfoques de umbral duro. Esto hace que el

sistema se adapte al conjunto de datos de entrenamiento debido a esas decisiones

heurísticas. Cuando se buscan otros tipos de SQAs que traten de superar tales

limitaciones y se ocupen de la generalización, se encuentran algunas investigaciones

que aplican un sistema de lógica difusa (FLS) de tipo I [248]. Sin embargo, el SQA

fisiológico se convierte en un reto cuando se tienen escenarios heterogéneos. Por lo

tanto, el FLS de tipo I está limitado en cuanto a la cantidad de incertidumbre a la

que puede hacer frente.

Por esta razón, y con vistas a la aplicación de SQA heterogéneos, en esta inves-

tigación se explota un conjunto reducido de características específicas y agnósticas

del dominio con un FLS de tipo II de intervalo, específicamente un clasificador

basado en reglas difusas (FRBC). Obsérvese que la técnica de tipo II está pensada

específicamente para tratar la incertidumbre comentada, ya que cada nivel de las

características se fuzzifica basándose en un conjunto difuso de intervalo denominado

Huella de Incertidumbre (FOU) [249].
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5.2.3.1 Diseño, formación y validación de SQA

La figura 5-16 muestra la arquitectura de formación SQA utilizada en esta investi-

gación. En concreto, esta arquitectura se compone de siete procesos diferentes. Los

siguientes subapartados ofrecen una visión general de cada una de las etapas de esta

arquitectura.
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Conditioning
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Raw 
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Data

Feature 
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Function Design 
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Figure 5-16: Arquitectura de formación SQA propuesta.

Adquisición y acondicionamiento

Una vez filtrada la señal siguiendo la arquitectura de filtrado integrada seleccionada

anteriormente, se procede a la segmentación. Este proceso se basa en el hecho de

que realizar la extracción de características en pequeños trozos de datos aliviará los

diferentes procesos estadísticos a realizar (por ejemplo, los cálculos de complejidad

temporal de la media o desviación estándar se basan en la cantidad de datos o

muestras, es decir, 𝒪(𝑛)). En nuestro caso, para el SQA propuesto, la longitud

de la ventana segmentada se establece en 3 segundo. Esta duración específica puede

proporcionar dos períodos de frecuencia cardíaca (HR) para un mínimo de 40 latidos

por minuto (BPM). Además, dentro de este corto periodo de tiempo, podemos

considerar incluso un comportamiento cuasi-estacionario de esta señal fisiológica.

Obsérvese que, a medida que disminuimos la ventana de procesamiento, también

disminuye el uso de recursos dentro de un sistema integrado, pero aumenta el mínimo

de BPM al que podemos asegurar dos períodos de la señal. Este hecho nos lleva a una

decisión de compromiso que en nuestro caso viene dada por los hechos fisiológicos

comentados y por trabajos anteriores que utilizaban longitudes de ventana temporal

iguales o similares [247].
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Feature extraction

A continuación, se aplican diferentes técnicas de extracción de rasgos para caracteri-

zar el procesamiento de la ventana actual. En concreto, se extraen cuatro caracterís-

ticas. Obsérvese que todas las características aplicadas se basan en el tiempo. Esta

decisión se debe a su menor complejidad computacional y a su robusto rendimiento,

demostrado en publicaciones recientes [242]. Las diferentes características extraídas

se detallan a continuación:

• Curtosis. Es la métrica estadística relacionada con la forma de una distribución

de probabilidad que mide el grado de concentración que se presenta alrededor

de la media de la distribución de frecuencias para una variable de valor real.

También se describe como la medida de la cola. Esta medida estadística de

orden superior viene dada por la ecuación 4.18.

• Entropía. La Entropía de Shannon proporciona una medida cuantitativa con

respecto a la incertidumbre o aleatoriedad de la señal. Esta característica se

define como:

𝑒 = −
𝑁∑︁

𝑖=1
(𝑥2

𝑖 )𝑙𝑜𝑔(𝑥2
𝑖 ), (5.2)

donde 𝑁 es el tamaño de la muestra, y 𝑥𝑖 es cada una de las muestras de datos

filtrados.

• Relación señal/ruido (SNR). Se trata de una de las características más uti-

lizadas en los sistemas SQA. Compara la potencia de una señal deseada con

respecto al ruido observado. En este caso, se realiza el siguiente cálculo:

𝑠𝑛𝑟 = 𝜎𝑎𝑏𝑠(𝑥)

𝜎𝑥

, (5.3)

donde 𝜎𝑎𝑏𝑠(𝑥) es la desviación estándar del valor absoluto de la señal, mientras

que 𝜎𝑥 es la desviación estándar de la señal.

• Perfil de la matriz. Hasta donde yo sé, esta característica no se ha utilizado

para ningún sistema PPG SQA en la literatura, aunque se utiliza ampliamente

en la detección de anomalías de series temporales [250,251]. Esta métrica ofrece

diferentes ventajas que pueden proporcionar un SQI robusto y fiable, como el

agnosticismo de dominio, el tiempo determinista y la ausencia de parámetros.

La ecuación de trabajo para el perfil de la matriz se basa en el perfil de distancia
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dado por las distancias euclidianas normalizadas de puntuación Z de diferentes

subsecuencias dentro de la serie temporal:

𝑑𝑖,𝑗 =
√︃

2𝑚(1− 𝑄𝑖,𝑗 − 𝜇𝑖𝜇𝑗

𝑚𝜎𝑖𝜎𝑗

), (5.4)

donde 𝑄𝑖,𝑗 es el producto punto de las dos subsecuencias con longitud 𝑚 (𝑇𝑖,𝑚

y 𝑇𝑗,𝑚) de la serie temporal, y 𝜇 y 𝜎 son la media y la desviación estándar de

la subsecuencia respectiva. Obsérvese que para este trabajo de investigación

se calcula la media sobre el conjunto de valores almacenados en 𝑑𝑖,𝑗 y se asigna

a cada ventana de procesamiento de 3 segundos. En cuanto al algoritmo

específico, utilizamos SCRIMP++, que ofrece la menor complejidad temporal

entre las diferentes implementaciones posibles [252].

Después de extraer el conjunto completo de características para todos los diferentes

sujetos, se aplica un controlador automático de ganancia (AGC) para limitar la

amplitud y escalar la información extraída. En este caso, utilizamos un AGC de

0− 10.

Cuantificación y generación de particiones

Siguiendo un enfoque totalmente orientado a los datos, este trabajo de investigación

utiliza la cuantificación y la partición de datos sobre los datos de entrenamiento con-

siderados para generar los diferentes conjuntos difusos de forma no supervisada. Así,

estos procesos son esenciales para evaluar los límites de las representaciones lingüís-

ticas conceptuales definidas para cada característica y modelar adecuadamente las

diferentes funciones de pertenencia. Esto se hace para evaluar si existe una partición

o separación de los valores de las características en función de su distribución.

En concreto, en este caso, aplicamos el algoritmo cíclico de Lloyd [253] para opti-

mizar las diferentes particiones utilizando las características revisadas y apuntando

a la extracción de tres variables lingüísticas: Baja (L), Media (M) y Alta (H). El

algoritmo de LLoyd se ejecuta en un proceso iterativo para cada secuencia o rasgo

entrante, 𝐴1, 𝐴2, 𝐴3, ..., 𝐴𝑚, dirigiéndose a una mínima distorsión cuadrática media

o error cuadrático medio para las particiones generadas 𝐵1, 𝐵2, 𝐵3, ..., 𝐵𝑚. Debido

al sistema de lógica difusa que se aplicará dentro del sistema propuesto, la salida de

esta etapa debe ser las particiones o intervalos cuantificados para cada secuencia o
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característica entrante. Obsérvese que, al tratarse del diseño de un sistema SQA in-

variante de sujeto, la cuantificación y optimización de la partición se aplica de forma

independiente para cada sujeto, lo que da un conjunto de 𝑚 particiones o intervalos

individuales (𝜈𝑖) con 𝑚 − 1 puntos finales (𝜏). Esto se describe en la figura 5-17.

Las particiones generadas son consideradas posteriormente por la siguiente etapa

τ𝑚𝑖𝑛

𝑣1 𝑣2 𝑣3

τ𝑚𝑎𝑥

τ1 τ2

Figure 5-17: Representación de intervalo con tres (𝑚) particiones (𝜈) y dos puntos
finales encontrados (𝜏). Los valores 𝜏𝑚𝑖𝑛 y 𝜏𝑚𝑎𝑥 son el mínimo y el máximo de la
secuencia entrante que se evalúa o los puntos finales izquierdo y derecho.

de la arquitectura de entrenamiento de SQA propuesta para diseñar las diferentes

funciones de membresía a implementar.

Diseño de funciones de pertenencia de tipo II

A partir de los intervalos o particiones generados y de los puntos finales, utilizamos

la metodología de Aproximación a los Intervalos (IA) [254] para diseñar las fun-

ciones de pertenencia iniciales así como las FOUs. Esta técnica se aplica sobre el

conjunto completo de particiones de características [𝜈1, 𝜈𝑚] y se basa en dos procesos

diferentes. En primer lugar, se aplica un paso de preprocesamiento para el conjunto

completo de intervalos. Este paso se basa en cuatro etapas. La primera etapa aplica

una comprobación de saturación para garantizar que todas las características están

dentro del intervalo. A continuación, las dos etapas siguientes se ocupan de la de-

tección de valores atípicos. Por un lado, se utiliza una prueba de Box y Whisker

para eliminar posibles valores atípicos fuera de ciertos criterios de límite intercuartil,

mientras que, por otro lado, se aplica un tratamiento de límites de tolerancia para

comprobar que cada punto está contenido dentro de un rango específico con respecto

a la media y las desviaciones estándar de los puntos finales izquierdo y derecho y los

intervalos. En la última etapa, se realiza un tratamiento de intervalos razonables.

Éste se basa en definiciones o requisitos específicos que deben cumplir los distintos

intervalos. Por ejemplo, un intervalo no válido o no razonable es aquel que no se

solapa con otro intervalo de datos. Por último, tras las etapas de preprocesamiento,

se lleva a cabo la segunda etapa de la técnica de IA. Comprende también diferentes

etapas, desde la asignación de un intervalo a una función de pertenencia inicial de
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tipo I hasta el cálculo de un modelo matemático para las FOU finales propuestas.

Por ejemplo, la Figura 5-18 muestra el resultado final de las funciones de pertenen-

cia y FOUs generadas utilizando los datos de entrenamiento de la característica del

perfil de la matriz.
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Figure 5-18: Funciones de pertenencia de tipo II generadas a partir de los datos
de características del perfil de la matriz aplicando IA para todos los sujetos de
entrenamiento. Tres variables lingüísticas: Baja (L), Media (M), Alta (H). El área
sombreada en gris es la FOU obtenida.

Formalmente, todo conjunto difuso de tipo II o concepto lingüístico está definido

por una función de pertenencia que viene dada por la siguiente ecuación 5.5:

̃︀𝐴 = {(𝑥, 𝑢, 𝑓𝑥(𝑢))|∀𝑥 ∈ 𝑋, ∀𝑢 ∈ [𝜇̃︀𝐴(𝑥), 𝜇̃︀𝐴(𝑥)] ⊆ [0, 1]}, (5.5)

donde 𝑥 es el universo del discurso contenido en 𝑋, 𝑢 es el valor de pertenencia

primario, 𝑓𝑥(𝑢) es el valor de pertenencia secundario, y 𝜇̃︀𝐴 representa las respectivas

funciones de grado de pertenencia inferior (
¯
𝜇̃︀𝐴(𝑥)) y superior (𝜇̄̃︀𝐴(𝑥)) del concepto

lingüístico ̃︀𝐴. En concreto, para un sistema difuso de tipo intervalo II, 𝑓𝑥(𝑢) se

simplifica como

𝑓𝑥(𝑢) = 1,∀𝑥 ∈ 𝑋, ∀𝑢 ∈ [𝜇̃︀𝐴(𝑥), 𝜇̃︀𝐴(𝑥)] ⊆ [0, 1]}. (5.6)

Así, dado un universo discreto de discurso e independientemente de la forma de
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pertenencia, se almacenan ocho puntos para cada conjunto difuso, es decir, cuatro

puntos 𝑥 por funciones de pertenencia (inferior y superior) que delimitan dicho

universo. Nótese que en nuestro caso, debido al factor de escalado de características

anterior, 𝑋 ⊆ [0, 10].

Optimización de las reglas de decisión

Uno de los objetivos finales de esta arquitectura de entrenamiento es generar el

conjunto de reglas óptimas para integrar en el FRBC integrado. Nótese que cada

regla se conceptualiza con la siguiente nomenclatura:

𝑅𝑗 : 𝐼𝐹 𝜑𝑎 𝑖𝑠 𝜆𝑏 𝑎𝑛𝑑 ... 𝑎𝑛𝑑 𝜑𝑐 𝑖𝑠 𝜆𝑑 𝑡ℎ𝑒𝑛 𝑌 𝑖𝑠 𝛾𝑛/𝑐 (5.7)

donde 𝑎 ̸= 𝑐, 𝜑 son los diferentes antecedentes o características contenidas en la

regla 𝑗, 𝜆 son las variables lingüísticas activadas para cada antecedente, y 𝛾 es el

respectivo consecuente de la regla. Obsérvese que para este trabajo de investigación,

el FRBC implementado se basa en una salida binaria, que conduce a dos clases o

consecuentes diferentes, es decir, clase positiva para los segmentos ruidosos (𝛾𝑛) y

clase negativa para los segmentos limpios (𝛾𝑐).

Para lograr el propósito de esta etapa, se integra un algoritmo genético evolutivo

(GA) y se utiliza para identificar las reglas que en conjunto dan los mejores resultados

de clasificación. Nótese que esta optimización del entrenamiento se ha utilizado en

trabajos anteriores para diferentes aplicaciones [255]. En concreto, en este caso, el

AG se fija en un máximo de generaciones (es decir, el número máximo de iteraciones

antes de que el algoritmo se detenga) y el tamaño de la población (es decir, el número

de soluciones factibles) hasta 50, utiliza una función de selección de torneo, y emplea

un cruce de un punto para la combinación de cromosomas. Nótese que la tolerancia

del AG se fija en 1 * 10−5. Así, la estructura de cada fenotipo viene dada por

𝜌𝑗 = {𝜑1
1, 𝜑1

2, 𝜑1
3, 𝜑2

1, 𝜑2
2, 𝜑2

3, ..., 𝜑𝑗
𝑖 ,

𝜆1
1, 𝜆1

2, 𝜆1
3, 𝜆2

1, 𝜆2
2, 𝜆2

3, ..., 𝜆𝑗
𝑖 ,

𝛾𝑛, 𝛾𝑐, ..., 𝛾𝑖}.

(5.8)

Obsérvese que, inicialmente, las reglas se generan de forma aleatoria, el número

máximo de antecedentes permitido para cada regla (𝐴𝑚𝑎𝑥) se fija en tres, y el número
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máximo de reglas totales (𝑀) se establece en diez. Estas últimas consideraciones se

hacen para garantizar que el conjunto final de reglas sea lo suficientemente completo

e interpretable.

Además, dentro de esta etapa, se asigna un Peso de la Regla (RW) a cada regla gen-

erada, tanto para los miembros superiores como para los inferiores. Esta puntuación

se calcula como se indica en [256], a continuación:

𝑅𝑊 𝑗 = 𝑐𝑗 · 𝑠𝑗

𝑅𝑊 𝑗 = 𝑐𝑗 · 𝑠𝑗

(5.9)

donde 𝑐𝑗 y 𝑠𝑗 son la confianza de la regla y el soporte de la regla 𝑗 respectivamente.

La primera representa la probabilidad condicional de que un patrón clasifique cor-

rectamente una instancia de datos, mientras que la segunda es una medida para

cuantificar la cobertura de la regla en el conjunto de datos de entrenamiento. Vienen

dados por,

𝑐𝑗(𝜑𝑗 ⇒ 𝛾) =
∑︀

𝑥𝑡∈𝛾 𝑤𝑠
𝑗(𝑥𝑡)∑︀𝑀

𝑗=1 𝑤𝑠
𝑗(𝑥𝑡)

𝑠𝑗(𝜑𝑗 ⇒ 𝛾) =
∑︀

𝑥𝑡∈𝛾 𝑤𝑠
𝑗(𝑥𝑡)

𝑀

, (5.10)

donde 𝑥𝑡 es cada instancia de datos contenida en el conjunto de entrenamiento, y

𝑤𝑠
𝑗 es la fuerza escalada de activación de dichos datos con respecto a cada regla, es

decir, el grado de coincidencia de la regla 𝑗 con la entrada 𝑥𝑡. La fuerza de activación

escalada se calcula como:

𝑤𝑠
𝑗(𝑥𝑡) = 𝑤𝑚(𝑥𝑡)∑︀

𝑘,𝑌 =𝛾 𝑤𝑘(𝑥𝑡)
, (5.11)

donde 𝑤𝑚(𝑥𝑡) es la fuerza de activación, y 𝑤𝑘(𝑥𝑡) es la suma de todas las fuerzas de

activación que tienen la misma clase que el consecuente de la regla 𝑗. Finalmente,

la fuerza de activación se calcula como se indica en la siguiente ecuación:

𝑤𝑗(𝑥𝑡) =
𝐴𝑚𝑎𝑥∏︁
𝑧=1

𝜇𝑧̃︀𝐴(𝑥𝑡), (5.12)

donde 𝜇𝑧
𝑤𝑖𝑑𝑒𝑡𝑖𝑙𝑑𝑒𝐴(𝑥𝑡) representa el valor del grado de pertenencia de la instancia de
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datos 𝑥𝑡 para las funciones de grado de pertenencia inferior y superior difusas de

tipo II, como se denota en la ecuación 5.5.

Generación del nivel de calidad (SQi)

Durante la evaluación de cada iteración del AG, la aptitud se calcula en base a un

conjunto de validación específico. La división entre los conjuntos de entrenamiento

y de validación se realizó utilizando diferentes técnicas de CV, hold-out y k-fold.

Por un lado, se emplearon diferentes porcentajes de conjuntos de validación para la

validación hold-out. En concreto, el sistema se ha entrenado utilizando un hold-out

aleatorio y estratificado del 40%, 30%, 20% y 10%. Por otra parte, se utilizaron

conjuntos de datos de entrenamiento y validación disjuntos de 5 veces. Estos pro-

cesos garantizan que no haya ningún sesgo en la selección de los conjuntos de datos

de entrenamiento y validación. Obsérvese que, como la adquisición de segmentos

de la señal y la extracción de características no se someten a ningún proceso de

solapamiento, no hay flujo de información del aprendizaje de reglas de un conjunto

de entrenamiento o pliegue a otros.

En cuanto a la generación de SQi específicas para cada una de las instancias con-

tenidas en el conjunto de validación, se aplican dos métodos. Ambos se basan en el

cálculo del grado de asociación con respecto a la regla 𝑗 que se está evaluando, que

viene dado por

ℎ𝑗(𝑥𝑡) = 𝑤𝑠
𝑗(𝑥𝑡) ·𝑅𝑊 𝑗, ℎ𝑗(𝑥𝑡) = 𝑤𝑠

𝑗(𝑥𝑡) ·𝑅𝑊 𝑗, (5.13)

donde la fuerza de activación y el RW se obtienen utilizando las ecuaciones 5.12 y

5.9 respectivamente. Así, el grado de asociación global considerando la contribución

de las funciones de pertenencia de tipo II superior e inferior para una regla 𝑗 se

calcula como

ℎ𝑗(𝑥𝑡) =
ℎ𝑗(𝑥𝑡) + ℎ𝑗(𝑥𝑡)

2 . (5.14)

Basándose en esta puntuación de clasificación final, el primer método de razon-

amiento (𝛼) empleado para asignar la clase predicha se basa en el método de máx-

ima coincidencia seleccionando el consecuente de la regla con el máximo grado de

asociación. El segundo método (𝛽) se basa en el grado de asociación máximo de

la agregación de todos los grados de asociación que tienen el mismo consecuente.
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Obsérvese que, como el resultado del sistema es binario, este último se traduce en el

máximo entre dos grados de asociación acumulados. En caso de empate, clasificamos

aleatoriamente la clase predicha para ambos métodos. Por lo tanto, estos procesos

pueden expresarse como

𝑌𝛼 = 𝛾𝑗 ⇒ max
𝑗∈[1,𝑀 ]

(ℎ𝑗(𝑥𝑡)), (5.15)

𝑌𝛽 = 𝛾𝑗 ⇒ max
∀𝑘∈𝑗

⎛⎝ ∑︁
𝑘,𝑌 =𝛾𝑛

ℎ𝑘(𝑥𝑡),
∑︁

𝑘,𝑌 =𝛾𝑐

ℎ𝑘(𝑥𝑡)
⎞⎠ , (5.16)

donde 𝑌𝑎𝑙𝑓𝑎 y 𝑌𝑏𝑒𝑡𝑎 son la clase predicha obtenida con el primer y segundo método de

razonamiento respectivamente. Hasta donde yo sé, es la primera vez que se propone,

valida y aplica el segundo método de razonamiento.

Métodos de evaluación del rendimiento

Por último, la evaluación del rendimiento de cada iteración validada de forma

cruzada se realiza a lo largo del coste calculado mediante el Coeficiente de Cor-

relación de Mathew (MCC) como sigue:

𝑐𝑜𝑠𝑡 = 1− 𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁√︁
(𝑇𝑃 + 𝐹𝑃 )(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁)

(5.17)

donde 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 y 𝐹𝑁 son los verdaderos positivos, los verdaderos negativos, los

falsos positivos y los falsos negativos obtenidos de la matriz de confusión utilizando

las etiquetas predichas comparadas con respecto a las etiquetas doradas. Tenga en

cuenta que para la validación cruzada de 5 pliegues, el coste se calcula como la media

de todos los costes del conjunto de datos de validación de pliegues. Una vez recuper-

ado el coste, el AG compara dicho valor con un criterio de tolerancia predefinido. Si

el coste es mayor que la tolerancia del AG, éste rellena un nuevo conjunto de reglas,

y el proceso se repite hasta que se cumpla el criterio de tolerancia del AG. Además

del MCC, también se utilizan otras métricas para seguir comparando las distintas

validaciones cruzadas. Estas métricas son: la sensibilidad, la especificidad, la media

geométrica entre la sensibilidad y la especificidad (Gmean) y la precisión (ACC).

5.2.3.2 Implantación de SQA y autoajuste

En cuanto a las diferencias entre las arquitecturas online (embebidas) y offline,

cabe destacar que en la primera no se realiza ningún tipo de partición, generación
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de miembros ni optimización de reglas, ya que estos procesos ya se realizaron durante

el proceso de entrenamiento. La figura 5-19 representa la arquitectura incrustada

completa. En primer lugar, la adquisición, el acondicionamiento y la extracción de

características siguen el mismo esquema que en la sección 5.2.2. En segundo lugar,

con respecto al FRBC, el conjunto optimizado de reglas, los RW y los valores de las

funciones de pertenencia, que se obtuvieron tras el entrenamiento y la validación,

son parámetros codificados. Estos se utilizan específicamente para los cálculos en

línea de la fuerza escalada de activación y los grados de asociación para cada nueva

instancia de datos. Obsérvese que dichos cálculos siguen las ecuaciones 5.11 y 5.14

respectivamente.

Acquisition & 

Conditioning

Feature

Extraction
SoA and 

sSoA

ExtractionAssociation 

degree 

calculation

PPG 

Sensor 

SQi

Quality Prediction into the System-On-Chip

Hard-Coded Parameters

- Optimised Rule Set

- Rule Weights

- Membership Functions

Self-tunning

Figure 5-19: Arquitectura integrada SQA implementada. SoA: Fuerza de Activación.
sSoA: Fuerza de activación escalada.

La pequeña base de reglas considerada en este trabajo de investigación como req-

uisito para facilitar la interpretabilidad del modelo puede llevar, a largo plazo, a

afrontar incertidumbres acumuladas. Por ello, proponemos un FRBC de tipo II au-

toajustable en línea. En concreto y teniendo en cuenta trabajos anteriores relaciona-

dos con los sistemas difusos adaptativos de tipo II [257], el autoajuste implementado

se basa en la generación online de nuevas reglas en caso de que la nueva instancia

de datos muestre un grado de asociación nulo teniendo en cuenta las diez reglas

iniciales, es decir, que ninguna de las reglas existentes se dispare. El algoritmo 1

muestra el proceso implementado para este autoajuste en línea. En primer lugar,

los antecedentes y los conceptos lingüísticos activados que conforman la nueva regla

se estiman en función de la fuerza máxima de activación de tres, basada en el grado

de pertenencia de la nueva instancia de datos, línea 1. Obsérvese que la selección

se limita a tres debido al requisito de antecedente máximo impuesto, como se ha

indicado en la sección anterior. Así, la nueva regla estará siempre formada por tres
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antecedentes con sus respectivos conceptos lingüísticos activados. A continuación,

se calcula el grado de similitud mediante el algoritmo de Nguyen [258], línea 2. Este

proceso no requiere ejecutar el cálculo de las similitudes en línea, ya que los difer-

entes grados de similitud entre las diferentes membresías para cada antecedente ya

han sido calculados fuera de línea. Pueden existir reglas, dentro de la base de reglas

original, que posean menos de tres antecedentes, por lo que, para considerar tales

particularidades, las similitudes devueltas se escalan multiplicándose por el número

de antecedentes de la regla con la que se compara. A continuación, las RWs para la

nueva regla se derivan considerando la matriz de similitudes obtenida, es decir, hay

un grado de similitud de la nueva regla con cada regla existente, y las RWs existentes

dentro de la base de reglas, líneas 3-4. Finalmente, para estimar el consecuente (𝛾)

o clase de la nueva regla, se selecciona el consecuente de la regla que tiene la máx-

ima similitud con la nueva regla, líneas 7-11. Después de ejecutar este algoritmo, la

base de reglas y las RW se actualizan con la nueva información. Además, se repite

el mismo proceso de inferencia basado en los grados de asociación, que se realizó

antes de la ejecución del algoritmo, asignando la etiqueta correspondiente a la nueva

instancia de datos. Para limitar el impacto de este proceso en el sistema, el número

máximo de reglas nuevas se fijó en cinco, lo que puede llevar a un máximo de 15

reglas considerando las 10 iniciales.

Algorithm 1: Autoajuste en línea mediante el uso de similitudes de Nguyen.
Input : Dato nuevo (𝑑𝑛𝑒𝑤);Valores de membresía (𝑀𝐹𝑠);

Reglas actuales, pesos para la parte baja y alta (𝑅, 𝑅𝑊𝑙𝑜𝑤, 𝑅𝑊𝑢𝑝);
Output: Nueva base de reglas, nuevos pesos inferiores y superiores

(𝑅𝑛𝑒𝑤, 𝑅𝑊𝑙𝑛𝑒𝑤, 𝑅𝑊𝑢𝑛𝑒𝑤);
Data: Similitud para la afiliación inferior y superior (𝑠𝑙𝑜𝑤, 𝑠𝑢𝑝);
Similitud media y posición máxima (𝑠𝑚𝑒𝑎𝑛, 𝑠𝑚𝑎𝑥𝑃 𝑜𝑠);

1 𝑅𝑛𝑒𝑤 ←− 𝐺𝑒𝑡𝑀𝑎𝑥𝑆𝑜𝐴(𝑑𝑛𝑒𝑤, 𝑀𝐹𝑠) basado en (5.12);
2 𝑠𝑙𝑜𝑤, 𝑠𝑢𝑝 ←− 𝑁𝑔𝑢𝑦𝑒𝑛(𝑑𝑛𝑒𝑤, 𝑀𝐹𝑠, 𝑅, 𝑅𝑛𝑒𝑤);
3 𝑅𝑊𝑙𝑛𝑒𝑤 = ∑︀𝑀

𝑗=1(𝑠𝑙𝑜𝑤𝑗
*𝑅𝑊𝑙𝑜𝑤𝑗

)/∑︀𝑀
𝑗=1 𝑅𝑊𝑙𝑜𝑤𝑗

;
4 𝑅𝑊𝑢𝑛𝑒𝑤 = ∑︀𝑀

𝑗=1(𝑠𝑢𝑝𝑗
*𝑅𝑊𝑢𝑝𝑗

)/∑︀𝑀
𝑗=1 𝑅𝑊𝑢𝑝𝑗

;
5 Update 𝑅𝑊𝑙𝑜𝑤,𝑢𝑝 with 𝑅𝑊𝑙𝑛𝑒𝑤,𝑢𝑛𝑒𝑤;
6 for 𝑖← 1 to 𝑀 do
7 𝑠𝑚𝑒𝑎𝑛𝑖

= (𝑠𝑢𝑝𝑖
+ 𝑠𝑙𝑜𝑤𝑖

)/2;
8 end
9 𝑠𝑚𝑎𝑥𝑃 𝑜𝑠 ←− 𝐹𝑖𝑛𝑑𝑀𝑎𝑥𝑃𝑜𝑠(𝑠𝑚𝑒𝑎𝑛);

10 𝑅𝑛𝑒𝑤(𝛾) = 𝑅(𝑠𝑚𝑎𝑥𝑃 𝑜𝑠, 𝛾);
11 Actualizar 𝑅 con la nueva regla 𝑅𝑛𝑒𝑤;
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5.2.3.3 Herramientas y métodos

Se utilizaron tres conjuntos de datos diferentes para entrenar, validar y probar

el SQA propuesto. En primer lugar, llevamos a cabo nuestro propio experimento

mediante el cual se recopilaron los datos de entrenamiento y validación de unos

pocos disparos. Los datos se extrajeron del experimento explicado en el capítulo

6. En concreto, para el sistema SQA propuesto, se utilizaron unos pocos disparos

de 993 segundos de señal PPG registrados a 200 Hz de 10 voluntarios diferentes.

Hay que tener en cuenta que los estímulos eran dinámicos en cuanto al movimiento

del voluntario, es decir, el voluntario podía moverse sin más restricción que estar

sentado. A partir de estos datos, un experto familiarizado con la PPG y los artefactos

realizó anotaciones manuales para etiquetar la calidad aceptable e inaceptable de los

segmentos de PPG. El etiquetado se evaluó para cada ventana de PPG de 3 segundos

no solapada, lo que dio lugar a 331 ventanas con 269 segmentos de PPG aceptables

y 62 inaceptables. A continuación, se utilizaron dos conjuntos de datos públicos

de referencia para realizar una prueba totalmente ciega, es decir, no se proporciona

información sobre los datos de prueba durante el entrenamiento y la validación. El

primer conjunto de datos es Capnobase [259], del que se obtuvieron 9120 segundos

de señal PPG, mientras que el segundo conjunto de datos fue el Complex Systems

Laboratory (CSL) [260] con un total de 7200 segundos de señal PPG. Capnobase fue

el primer punto de referencia público para el análisis de la calidad respiratoria y de

la PPG y originalmente contiene 42 casos (voluntarios) con grabaciones de PPG de 8

minutos de duración a una frecuencia de muestreo de 300 Hz. Sin embargo, sólo 19 de

los 42 casos presentan segmentos de PPG aceptables e inaceptables. Este conjunto

de datos proporciona etiquetas de artefactos sin restricción temporal de ventanas.

CSL recoge señales de PPG de dos horas de duración de dos voluntarios diferentes,

niños de una unidad de cuidados intensivos pediátricos, que se registraron a una

frecuencia de muestreo de 125 Hz. Este conjunto de datos también proporciona

anotaciones de artefactos sin restricción temporal de ventanas, que se publicaron

recientemente en [261]. Cabe destacar dos consideraciones principales en relación

con esta colección de bases de datos específica. Por un lado, se utilizó un total de

17313 segundos de señal PPG, de los cuales aproximadamente sólo el 5% se utiliza

para la validación y el 95% para la prueba ciega. Por otro lado, la selección específica
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de los dos conjuntos de datos de prueba detallados se basó en la disponibilidad

de anotaciones. Por lo tanto, estas consideraciones apuntaban al hecho de que el

diseño de los sistemas SQA debe proporcionar una generalización suficiente para

hacer frente a entornos heterogéneos, como se ha dicho anteriormente.

Para ajustar las etiquetas de los segmentos de PPG proporcionadas por los con-

juntos de datos de prueba a la ventana de procesamiento de 3 segundos del sistema

propuesto, los datos de prueba se segmentaron en dicha longitud de ventana y la

etiqueta de cada ventana fue positiva (segmento inaceptable) en caso de estar dentro

de las etiquetas originales o solaparse con ellas. Así, tras este proceso, la cantidad

total de segmentos PPG aceptables e inaceptables obtenidos de Capnobase fue de

2909 y 131 respectivamente, y de 2131 y 269 de CSL.

5.2.3.4 Resultados

Esta sección presenta los resultados experimentales relativos a la validación, las

pruebas y el funcionamiento en tiempo real del sistema PPG SQA propuesto.

Validación y pruebas

Antes de realizar la validación y los procesos posteriores, se obtuvo la base de reglas

inicial mediante la optimización de AG, tal y como se detalla en la sección 5.2.3.1.

En la tabla 5.2 se presentan los resultados obtenidos para ambos métodos de clasi-

ficación de razonamiento y las técnicas de validación empleadas. Antes de explicar

estos resultados cabe hacer varias consideraciones. En primer lugar, no se aplica

ningún autoajuste durante la validación. En segundo lugar, se ejecuta un total de

30 iteraciones independientes para cada método de validación cruzada, es decir, las

particiones de entrenamiento y validación se seleccionan aleatoriamente para cada

ejecución. Esto se hace para proporcionar un valor estadístico. Por último, se

obtienen los RW para cada partición de entrenamiento de forma independiente.

En cuanto a los diferentes métodos de razonamiento, se comparan 𝛼, como el que

considera el máximo grado de asociación entre todas las reglas, y 𝛽, como el que

considera el máximo grado de asociación entre los grados de asociación agregados

para la clase positiva y los de la clase negativa. Se puede observar que 𝜏 supera

a 𝛼 alcanzando métricas medias más altas con menos desviación en la mayoría de

los casos. Esto se debe al equilibrio o distribución del RW entre las reglas, ya que

en este caso las reglas que tienen un consecuente de clase negativo poseen un RW
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Validation Performance Metrics
Reasoning Cross-Validation Sensitivity Specificity Gmean MCC ACC
Method Method 𝜇(𝜎) 𝜇(𝜎) 𝜇(𝜎) 𝜇(𝜎) 𝜇(𝜎)

40% Hold-Out 45.19 (7.17) 99.54 (0.47) 66.87 (5.21) 0.61 (0.06) 89.47 (1.37)
30% Hold-Out 55.78 (16.68) 97.81 (2.29) 72.92 (11.03) 0.64 (0.11) 89.97 (2.67)

𝛼 20% Hold-Out 72.91 (11.00) 90.98 (3.98) 81.25 (7.23) 0.62 (0.13) 87.58 (4.56)
10% Hold-Out 71.27 (14.93) 93.50 (5.10) 81.20 (9.80) 0.66 (0.18) 89.19 (5.67)

5 k-fold 83.71 (1.34) 92.63 (0.44) 88.05 (0.68) 0.73 (0.01) 90.95 (0.38)

40% Hold-Out 86.46 (5.55) 87.57 (3.10) 86.96 (3.33) 0.66 (0.06) 87.37 (2.80)
30% Hold-Out 87.68 (6.96) 87.59 (4.26) 87.56 (4.64) 0.67 (0.09) 87.60 (4.07)

𝛽 20% Hold-Out 87.09 (8.60) 88.24 (4.31) 87.57 (5.41) 0.68 (0.11) 88.03 (4.30)
10% Hold-Out 88.41 (10.43) 90.10 (10.44) 89.07 (6.46) 0.72 (0.13) 89.80 (5.54)

5 k-fold 87.37 (1.30) 88.54 (0.45) 87.95 (0.66) 0.68 (0.01) 88.31 (0.40)

Table 5.2: Métricas de rendimiento de validación utilizando los métodos de razon-
amiento 𝛼 y 𝜏 y nuestro propio conjunto de datos.

Dataset Método Comprobación de las métricas de rendimiento
Clasificación Sensibilidad Especificidad Gmean MCC ACC

[259]

𝛼 w/o s-T 79.39 93.92 86.34 0.51 93.29
𝛼 w/ s-T 82.44 92.05 87.11 0.48 91.64
𝛽 w/o s-T 80.91 93.81 87.12 0.52 93.25
𝛽 w/ s-T 84.73 90.82 87.72 0.47 90.55

[261]

𝛼 w/o s-T 71.75 99.48 84.48 0.81 96.38
𝛼 w/ s-T 75.47 99.06 86.46 0.82 96.41
𝛽 w/o s-T 73.60 99.48 85.56 0.82 96.58
𝛽 w/ s-T 81.41 98.82 89.69 0.84 96.88

Table 5.3: Métricas de rendimiento de las pruebas para los diferentes conjuntos de
datos de prueba utilizando los métodos de razonamiento 𝛼 y 𝛽, y el autoajuste (s-T).

más alto en comparación con las reglas que tienen un consecuente de clase posi-

tivo. Además, en general, se puede observar que 𝛼 presenta dependencia sobre la

cantidad de datos de entrenamiento, mientras que 𝛽 proporciona una validación del

sistema más robusta independientemente de este hecho. Nótese que, aunque esto se

ha observado específicamente para este conjunto de datos de entrenamiento, podría

ser aplicable a otros conjuntos de datos, así como a otros problemas. El mejor re-

sultado para el método 𝛼 se consigue utilizando 5 k-fold, lo que lleva a un 88,05%

y 0,73 de los valores promediados de Gmean y MCC respectivamente. Cuando se

comparan los resultados del método 𝛽, se observa que la validación cruzada del 10%

obtiene los mejores resultados promediados. Sin embargo, en el caso de considerar

el equilibrio entre las métricas promediadas y sus desviaciones, la configuración de 5

k-fold muestra el mejor rendimiento con 87,95%, 0,68, 0,66 y 0,01 de los valores pro-

mediados y de desviación estándar de Gmean y MCC respectivamente. Este análisis

se completa comparando los resultados de la validación k-fold para ambos métodos
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de razonamiento. En ese caso, 𝛼 presenta unas métricas ligeramente mejores que

𝛽 para todas las métricas de rendimiento excepto para la sensibilidad. Este último

hecho es una indicación del comportamiento real del sistema para ambos métodos

de razonamiento sobre los futuros datos no vistos, ya que 𝜏 proporciona una mejor

sensibilidad a expensas de la disminución de la especificidad. A pesar de estas úl-

timas diferencias entre ambos métodos, se puede concluir que la validación cruzada

k-fold supera al resto de los métodos y, por tanto, los RWs optimizados a utilizar

para las pruebas se obtienen promediando los RWs obtenidos durante la validación

k-fold considerando los 5 pliegues y las 30 iteraciones independientes.

Una vez realizada la validación del sistema y obtenida la base de reglas inicial op-

timizada y sus respectivos RWs, se procede a la recogida del conjunto de datos de

prueba tal y como se detalla en la Sección anterior. La tabla 5.3 muestra los re-

sultados obtenidos para los dos conjuntos de datos de referencia considerados y los

métodos de razonamiento. En este caso, también proporcionamos los resultados rel-

ativos a la aplicación de autoajuste. Obsérvese que en negrita están las métricas que

aumentaron tras la integración del autoajuste. Por un lado, el método 𝛽 consigue

generalmente métricas más altas que el método 𝛼 para ambos conjuntos de datos

cuando no se aplica el autoajuste. De hecho, la diferencia entre cualquiera de las

métricas que son peores para el método 𝛽 que para el método 𝛼 no supera siquiera

el 0,2%. Por otra parte, la aplicación del proceso de autoajuste condujo a la adi-

ción de una nueva regla por conjunto de datos con consecuente de clase positivo. Se

puede destacar una clara diferencia entre los resultados para este caso de uso, ya que

mientras que para CapnoBase sólo hay una mejora de la sensibilidad, para CSL se

puede observar un aumento para la mayoría de las métricas de rendimiento excepto

para la especificidad, cuyo empeoramiento no supera el 0,7%. Esta diferencia en la

tendencia de los resultados para los distintos conjuntos de datos puede atribuirse a

la naturaleza de los mismos. Hay que tener en cuenta que la heterogeneidad está

presente ya que estos conjuntos de datos contienen datos de diferentes voluntarios,

pero también que los artefactos dentro de los segmentos de PPG extraídos pueden

tener diferentes dinámicas caracterizadas. De hecho, aunque CapnoBase es mayor

que CSL, este último contiene el doble de segmentos PPG etiquetados inaceptables.

Por lo tanto, los resultados y también los efectos de la aplicación de autoajuste vari-
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Método Métricas de rendimiento de las pruebas
Clasificación Sensibilidad Especificidad Gmean MCC ACC
𝛼 w/o s-T 75.57 96.70 85.41 0.66 94.84
𝛼 w/ s-T 78.96 95.56 86.79 0.66 94.03
𝛽 w/o s-T 77.25 96.64 86.40 0.66 94.92
𝛽 w/ s-T 83.07 94.82 88.75 0.66 93.72

Table 5.4: Métricas de rendimiento promedio de las pruebas utilizando los métodos
de razonamiento 𝛼 y 𝛽, y el autoajuste.

arán en función de lo bien caracterizado que esté el objetivo a detectar (segmentos

PPG inaceptables). En resumen, la tabla 5.4 presenta los resultados promediados de

las pruebas tras combinar ambos conjuntos de datos de prueba. Los mejores resul-

tados se obtienen utilizando el método de razonamiento 𝛽 y el ajuste de autoajuste.

Esto lleva a un 88,75% y 0,66 Gmean y MCC promediados, lo que es comparable a

los resultados de validación obtenidos.

Funcionamiento en tiempo real

Para la implementación embebida del SQA propuesto, la base de reglas inicial op-

timizada, los RWs y las funciones de membresía se codifican en el SoC. Para ello

se cuantifican dichos parámetros mediante registros de 32 bits. Para validar la in-

tegración embebida, se ejecutan en el SoC 33 segmentos de PPG (24 aceptables y

9 inaceptables de 3 segundos) obtenidos del primer paciente del conjunto de datos

de validación. Por ejemplo, la Figura 5-20 representa un extracto de la señal PPG

filtrada, así como los diferentes valores de características para cada ventana de proce-

samiento de 3 segundos evaluada. Tenga en cuenta que el método de razonamiento

incrustado es 𝛽, ya que logró mejores resultados durante la validación fuera de línea

y las pruebas.

La tabla 5.5 informa de la comparación de las métricas de rendimiento entre la

implementación incrustada y la offline. Como era de esperar, esta última consigue un

mejor rendimiento. En concreto, alcanza hasta un 92,29% y un 0,85 de los valores de

Gmean y MCC respectivamente, mientras que la implementación embebida empeora

esos resultados bajándolos hasta un 91,67% y un 0,78. Esta diferencia de rendimiento

se debe a la pérdida de precisión de los diferentes procesos dentro del SoC. De

hecho, la Tabla 5.6 muestra el coeficiente de determinación (𝑅2) entre los resultados

embebidos y los registrados en MATLAB para los principales procesos del sistema.
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Figure 5-20: Captura en tiempo real de la implementación de SQA integrada que
muestra los diferentes valores de las características en cada ventana de procesamiento
(3 segundos).

Plataforma Sensibilidad Especificidad Gmean MCC ACC
MATLAB® 88.89 95.83 92.29 0.85 93.94

SoC 88.89 91.67 90.27 0.78 90.90
Table 5.5: Comparación entre las métricas de rendimiento registradas por MAT-
LAB para los 33 segmentos de PPG evaluados en el SoC utilizando el método de
razonamiento 𝑏𝑒𝑡𝑎.

Teniendo en cuenta que se trata de la primera implementación del sistema propuesto,

la mayoría de los procesos manejan números de punto flotante de 32 bits en sus

operaciones (IEEE 754). Así, las etapas menos exigentes desde el punto de vista

computacional y más sencillas, como los cálculos de fuerza de activación, Kurtosis y

SNR, obtienen un 𝑅2 de 0,99. Sin embargo, al enfrentarse a operaciones matemáticas

más complejas como el logaritmo dentro del cálculo de la Entropía y los múltiples

algoritmos FFT realizados durante el cálculo del perfil de la matriz, el 𝑅2 baja

a 0,98 y 0,97 respectivamente. Aunque estos errores de precisión son bajos, su

acumulación a lo largo de toda la predicción hace que el proceso final, es decir, el

grado de asociación para las clases negativas y positivas, tenga un 𝑅2 de 0,94 y 0,80

respectivamente. Esta es la razón de la caída de la métrica de rendimiento dentro

del SoC. Hay que tener en cuenta que la implementación de MATLAB® opera con

tipos de datos dobles, que corresponden a números de 64 bits en coma flotante.

En cuanto al análisis del ahorro de energía con y sin el método SQA, la tabla 5.7
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SoA Kurtosis Entropy SNR MP −AD +AD
𝑅2 0.99 0.99 0.98 0.99 0.97 0.94 0.80

Table 5.6: Coeficiente de determinación (𝑅2) para los principales procesos realizados
dentro del SoC. SoA: Fuerza de Activación. MP: Perfil de la matriz. − y + AD:
Grados de Asociación de Clase Negativa.

informa de cuatro escenarios diferentes de señales de prueba. Estos últimos fueron

elegidos para facilitar la comparación con [245] y [246]. Independientemente de la

aplicación del método SQA propuesto, el consumo de energía del sensor PPG es

inevitable para un sistema o aplicación de monitorización fisiológica continua. Así,

la línea base de consumo de energía del sistema es de 1053,36 𝑚𝐽 , que corresponde

al funcionamiento normal del sensor así como a la comunicación I2C implicada para

recoger los datos del mismo. Para la transmisión de cada ventana de procesamiento

de 3 segundos, la energía consumida por el BLE es de unos 15,50 𝑚𝐽 , lo que lleva a

318,60 𝑚𝐽 consumidos para la transmisión de la señal sin ruido durante 60 segundos.

El consumo de energía debido a la ejecución de todas las etapas implicadas en

el sistema SQA propuesto es de 59,40 𝑚𝐽 . Por lo tanto, teniendo en cuenta los

diferentes escenarios de la señal de prueba, podemos concluir que el método SQA

propuesto puede ahorrar un consumo de energía global del 1,5% al 20,7% para

señales PPG ruidosas con una duración de 12 a 60 segundos. Por el contrario, el

consumo de energía extra debido a la ejecución de SQA alcanza hasta el 4,3% para

una señal completa de 60 segundos sin ruido. Por último, también se cuantificaron

las complejidades de tiempo y memoria para el SQA propuesto. El tiempo medio

obtenido para ejecutar el método método SQA propuesto fue de 53,07 𝑚𝑠. La

memoria total requerida para manejar las variables globales y temporales, así como

los buffers de adquisición y procesamiento es de 15kB.

Para contextualizar algunos de los resultados obtenidos con respecto a otros traba-

jos reportados sobre SQA, la Tabla 5.8 presenta las métricas clave para el sistema

propuesto y tres trabajos recientes [245–247] que también fueron revisados. El tra-

bajo propuesto proporciona unas métricas de rendimiento comparables a las del

estado de la técnica. Cabe señalar que los otros trabajos no utilizaron las etiquetas

de artefactos proporcionadas por los conjuntos de datos de referencia. En su lu-

gar, etiquetaron de nuevo esos datos. Además, ninguno de ellos utilizó exactamente
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Escenarios de señales de prueba
Sistema sin SQA Sistema con SQA Overall

Energía
𝐸𝐶𝑆𝑒𝑛𝑠𝑜𝑟 𝐸𝐶𝑆𝑄𝐴 𝐸𝐶𝑇 𝑅 Total 𝐸𝐶𝑆𝑄𝐴 𝐸𝐶𝑇 𝑅 Total (with SQA)

(𝑚𝐽) (𝑚𝐽) (𝑚𝐽) (𝑚𝐽) (𝑚𝐽) (𝑚𝐽) (𝑚𝐽) saving/extra
60-segundos Señal sin ruido 1053.36 𝑁𝐸 318.60 1371.96 59.40 318.60 1431.36 4.3% Extra

60-segundos Señal ruidos 1053.36 𝑁𝐸 318.60 1371.96 59.40 𝑁𝐸 1112.76 20.7% Saving
6-seg. Señal ruidosa de 60 segundos 1053.36 𝑁𝐸 318.60 1371.96 59.40 292.05 1404.81 2.3% Extra
12-seg. Señal ruidosa de 60 segundos 1053.36 𝑁𝐸 318.60 1371.96 59.40 238.95 1351.71 1.5% Saving

Table 5.7: Análisis de ahorro de energía en tiempo real con y sin el método SQA.
𝐸𝐶𝑆𝑄𝐴: Consumo de energía para el sistema implementado con SQA. 𝐸𝐶𝑆𝑒𝑛𝑠𝑜𝑟:
Consumo de energía del sensor PPG. 𝐸𝐶𝑇 𝑅: Consumo de energía para la transmisión
BLE. 𝑁𝐸: No ejecutado.

Trabajo Validación Experimento Few Experimento ACC Clock Memoria Energía PlataformaMétricas Independiente Shot Observaciones (%) (𝑀𝐻𝑧) (𝑘𝐵) (𝑚𝐽)
amplitud absoluta, SAM3X8E

Vadrevu (2019) [245] ratio cruzado × × 38620 95.93 84 13 210 ARM
y autocorrelación Cortex-M3

SAM3X8E
G.N.K. Reddy (2020) [246] FOPC-DC × × 15000 93.21 84 29.56 – ARM

Cortex-M3
Curtosis, y Quad-core

Samiul Alam (2021) [247] autocorrelación, × × 8000 96.50 1200 88 63.1 ARM
límites empíricos Cortex-A53

Type-2 Fuzzy nrf52832
Propuesto Independiente del sujeto ✓ ✓ 331 93.72 64 15 59.40 ARM

(𝛽 w/ autoajuste) Cortex-M4

Table 5.8: Comparación con los trabajos publicados sobre SQA.

los mismos conjuntos de datos, tanto si los usaban para ajustar el umbral como si

los probaban. En cuanto al consumo de memoria y energía, ofrecemos una de las

métricas más bajas. En concreto, para el consumo de energía, [245] y [246] también

proporcionaron un análisis de ahorro de energía en tiempo real comparable al que

se indica en la tabla 5.7. Obtuvieron un ahorro energético global superior al 90,00%

para el segundo escenario de señales de prueba. Sin embargo, no consideraron ni

informaron del consumo de energía del sensor, que se supone que está funcionando

continuamente. También hay que destacar la diferencia de plataforma, ya que mien-

tras [245] y [246] utilizaron un dispositivo embebido (microcontrolador) comparable

al utilizado en este trabajo de investigación, [247] empleó un Cortex-A53 que está

lejos de poder ser comparado adecuadamente con el nuestro. Por último, se destacan

los enfoques de pocos y experimentos hacia la aplicación y la adaptación del sistema

a entornos heterogéneos, así como la usabilidad en la naturaleza.

El SQA propuesto proporciona un modelo de inferencia Mamdani simplificado y de

baja complejidad basado en reglas difusas que se despliega en dispositivos de borde

con pocos recursos. La principal novedad de esta investigación son los aspectos
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no heurísticos, adaptativos, orientados a los dispositivos portátiles e invariantes del

sistema SQA propuesto. En primer lugar, la característica no heurística se obtiene

utilizando un novedoso método no supervisado para generar conjuntos difusos de

tipo intervalo-II a partir de señales PPG basadas en la cuantificación. En segundo

lugar, la adaptación del sistema se consigue definiendo e implementando un novedoso

ajuste fino no supervisado en línea basado en la similitud escalada entre conjuntos

difusos de tipo intervalo-II para las actualizaciones autoadaptativas del modelo. Por

último, se logra el aspecto de la invariabilidad del sujeto y la heterogeneidad, ya que

todos los conjuntos de datos empleados contienen datos de diferentes voluntarios.

Este hecho hace que los artefactos dentro de los segmentos de PPG extraídos tengan

diferentes dinámicas. Para demostrar la implementación del PPG SQA en línea, se

realiza un análisis detallado del rendimiento integrado de los métodos propuestos

en el Brazalete y se compara con el estado del arte. En general, el trabajo prop-

uesto proporciona métricas comparables con el estado del arte comparado. Se logró

una precisión global en las pruebas a ciegas de hasta el 93,72%. La evaluación en

tiempo real mostró un consumo de energía de hasta 59,40 𝑚𝐽 para el SQA prop-

uesto, lo que supuso un ahorro global de energía del 20,7%. Dentro de este contexto y

comparación, también hay que tener en cuenta ciertas limitaciones del sistema prop-

uesto. En primer lugar, pueden aplicarse más optimizaciones de procesamiento de

señales digitales, como el escalado de cálculos enteros más pequeños y la instrucción

única de datos múltiples. En segundo lugar, se están realizando más experimentos

y recopilaciones de datos para aumentar los datos de entrenamiento y explorar el

espacio de diseño. Algunas de las ventajas y limitaciones identificadas durante la

realización de este sistema confirman la necesidad de contar con sistemas de SQA

centrados en proporcionar una generalización suficiente para tratar con entornos

heterogéneos, así como con implementaciones de SQA integradas en dispositivos de

borde extremo. Hay que tener en cuenta que, aunque nos centramos únicamente en

la señal PPG, se puede seguir investigando hacia enfoques similares para las demás

señales considerando este sistema como referencia.
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5.2.4 Extracción de características Exploración del espacio

de diseño
En esta sección se presenta una exploración del espacio de diseño de extracción de

características, que se centra en la extracción de información relacionada con BVP.

El análisis presentado se divide en las diferentes etapas de la arquitectura del soft-

ware, como muestra la Fig. 5-21. Así, se asume que las señales consideradas están

debidamente filtradas y segmentadas antes de la aplicación de cualquier técnica de

extracción de características. En cada etapa explorada, se evalúan y recomiendan

los parámetros de interés. En primer lugar, se discute la delineación morfológica

(bloque de detección de picos) mediante una comparación detallada de diferentes

algoritmos de detección de picos. En segundo lugar, se presentan las técnicas ha-

bituales aplicadas para extraer la información de frecuencia cuando se trata de los

puntos delineados de forma desigual o no uniforme, es decir, los bloques de inter-

polación o de recuento de latidos. En el caso de la aplicación de Bindi, se emplea,

implementa y discute la técnica de interpolación. Por último, las recomendaciones

específicas de las diferentes compensaciones discutidas en estas secciones se apli-

can en la sección 5.2.4.3 para un caso de uso particular de detección de estrés de

4 segundos, en el que una validación de los procesos de extracción de caracterís-

ticas incrustadas en el Brazalete se validan contra una herramienta de grado de

investigación. Todas las métricas consideradas en esta sección para caracterizar las

diferentes etapas se obtienen a partir de la implementación incorporada dentro de

la exploración del espacio de diseño en la pulsera. Nótese que la selección final de

los diferentes parámetros evaluados dependerá de los requisitos y necesidades de la

aplicación. En cuanto a la sección 5.2.2, este análisis se extrae de [159]. Así, aunque

los algoritmos evaluados se centran en un caso de uso PPG, algunas de las técnicas

de extracción de características, como el FFT, son comunes al resto de señales.
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Figure 5-21: Parameters and processes involved in the BVP-based DSE.

5.2.4.1 Extracción de características: Detección de picos

Centrándonos específicamente en la casuística del PPG, se pueden utilizar difer-

entes enfoques para delinear las series temporales del PPG. La robustez de este pro-

ceso de delineación es clave para detectar correctamente los parámetros morfológicos

de PPG deseados. Este hecho viene determinado no sólo por los pasos de filtrado an-

teriores, sino también por la diferente morfología de las ondas PPG, que puede verse

directamente afectada por factores como la edad y las emociones [262,263]. La figura

5-22 muestra la diferencia morfológica entre tres grupos de edad diferentes medida

con nuestro sensor PPG. Las diferencias observadas coinciden con las publicadas en

la literatura [264]. Por ejemplo, la parte dicroica de la onda es la más afectada. Este

hecho se debe principalmente a la variación del tono vascular con la edad, que se

traduce directamente en una mayor o menor vasoconstricción y vasodilatación. Esta

situación produce diferencias en la presión arterial que conducen a una distorsión del

escurrimiento diastólico. Dentro de este contexto fisiológico variable, diferentes algo-

ritmos de delineación podrían proporcionar resultados diferentes, es decir, diferentes

puntos morfológicos identificados de la señal PPG. Este hecho puede incluso empe-

orar cuando se restringen las arquitecturas de filtrado de la etapa inicial aplicadas,

lo que solía ocurrir en las aplicaciones integradas de monitorización fisiológica. Por

ejemplo, si la aplicación no utiliza ningún filtro de eliminación de la línea de base,

por ejemplo, un filtro de muesca por debajo de 0,5Hz, los diferentes puntos extraí-

dos por el algoritmo de delineación empleado deben ser lo suficientemente robustos

como para no verse afectados por las tendencias de baja frecuencia fuera de banda.
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Figure 5-22: Diferencias morfológicas del PPG entre tres grupos de edad. (a) Per-
sona de 18-24 años. (b) Persona de 35-44 años. (c) Persona de 55-65 años. Las
señales mostradas fueron adquiridas por el brazalete Bindi.

Se pueden aplicar diferentes técnicas para asegurar una detección robusta de pico

a pico. Sin embargo, algunas de ellas requieren la aplicación de cruces de cero a lo

largo de la primera y segunda derivadas de la señal [265, 266]. Este hecho afecta

directamente al tiempo de cálculo dentro de la cadena de procesamiento de datos.

Teniendo en cuenta las particularidades comentadas de esta etapa para un caso

de uso PPG, se presenta una comparación entre dos enfoques ligeros conocidos.

Por un lado, el primero se basa en un método de máximos/mínimos locales (LCM)

desarrollado por el equipo UC3M4Safety que utiliza la evolución de la pendiente y

la media local en periodos cortos de muestras junto con la ventana de procesamiento

de datos [159]. Los métodos LCM son bien conocidos dentro de los algoritmos de

detección de picos de PPG ya que solían ser menos exigentes computacionalmente

a costa de un menor rendimiento. Por otro lado, el segundo algoritmo está tomado

de [267] que se basa en un método de detección de umbral adaptativo (ADT) que

utiliza una pendiente variable calculada iterativamente en función de la desviación

estándar de la señal. Obsérvese que el segundo algoritmo fue validado con conjuntos
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de datos disponibles públicamente y superó a las técnicas de LCM sin requerir

operaciones de primera y/o segunda derivada de la señal.

Para el primer método, el Algoritmo 2 describe las operaciones realizadas para

cada ventana BVP. En concreto, el algoritmo comienza asumiendo que el valor

máximo es la primera muestra de la señal. A continuación, se calculan y evalúan

los valores de la media y la pendiente sobre un número determinado de muestras a

comparar (𝑠𝑡𝑐). Este paso se realiza si se cumple una de las dos condiciones de nivel

de señal umbral (máximo o mínimo). Por lo tanto, es esencial un equilibrio para

ajustar 𝑠𝑡𝑐. Por ejemplo, si la señal BVP se muestrea a 100Hz, la evaluación media

sobre diez muestras supone una atenuación de -6dB para 6Hz y una atenuación de

-3dB para 4,5Hz, siendo esta última cercana a 4Hz que es una frecuencia de interés

para apuntar a las frecuencias cardíacas máximas (BPM≥ 240). Por lo tanto, en

función de las altas frecuencias de ruido residuales esperadas de la señal filtrada, se

puede ajustar este parámetro. Para este algoritmo en particular, y guiado por el

compromiso adoptado en la etapa de filtrado en la Sección 5.2.2, se puede elegir un

𝑠𝑡𝑐 igual a diez, lo que aumenta la capacidad de detección de picos a expensas de la

complejidad del tiempo. Otro parámetro clave incluido en el algoritmo es 𝑑𝑖𝑠𝑡𝑚𝑖𝑛,

que se asigna inicialmente a un número específico de muestras 𝑘. Esta variable se

refiere a la distancia mínima permitida entre dos picos sistólicos identificados y se

fija en el número de muestras para la frecuencia más alta dentro del ancho de banda

del BVP. Como en el ejemplo anterior, si la señal BVP se muestrea a 100Hz y la

frecuencia de FC más alta aceptable es de 3,5 Hz (210 BPM), entonces 𝑘 se fija en

28 (muestras). Este parámetro no afecta a la complejidad del tiempo del algoritmo,

sino que proporciona un manejo robusto para los posibles transitorios que todavía

están en la señal y que podrían estar afectando a la detección del pico. Además,

hemos introducido diferentes condiciones en el algoritmo desarrollado para cubrir

casos morfológicos especiales. Por un lado, en el caso de tratar con crestas sistólicas

amplias, sólo el último punto de las mismas se considera el pico sistólico, líneas

11-17 del Algoritmo 2. Por otro lado, en caso de tener crestas sistólicas cortas,

podría ocurrir que se dejara un pico potencial, lo que se tiene en cuenta en las líneas

19-21 del Algoritmo 2. Aunque el algoritmo se utiliza para extraer la información

de los picos sistólicos, el procesamiento de los valles también se realiza dentro de
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él. Este último se realiza a través de operaciones opuestas a las del procesamiento

de los picos. Nótese que, en nuestro caso, la señal está centrada sin ninguna deriva

o tendencia de DC antes de la aplicación de este algoritmo gracias a las etapas de

filtrado previas.

Algorithm 2: Algoritmo de detección de picos BVP
1 function getPeaks (𝑏𝑣𝑝𝑠𝑖𝑔𝑛𝑎𝑙, 𝑏𝑣𝑝𝑙𝑒𝑛);

Input :
Señal limpia de BVP 𝑏𝑣𝑝𝑠𝑖𝑔𝑛𝑎𝑙;
Número total de muestras 𝑏𝑣𝑝𝑙𝑒𝑛;
Output:
Posición de los picos detectados 𝑝𝑒𝑎𝑘𝑠𝑖𝑛𝑑𝑒𝑥;
Número total de picos 𝑝𝑒𝑎𝑘𝑠𝑡𝑜𝑡𝑎𝑙;
Data:
Máximo y mínimo para cada búsqueda 𝑝𝑒𝑎𝑘𝑠𝑚𝑎𝑥, 𝑝𝑒𝑎𝑘𝑠𝑚𝑖𝑛
Contador de picos detectados 𝑝𝑒𝑎𝑘𝑠𝑐𝑜𝑢𝑛𝑡
Separación mínima entre los picos detectados 𝑑𝑖𝑠𝑡𝑚𝑖𝑛

2 𝑝𝑒𝑎𝑘𝑠𝑚𝑎𝑥 ←− 𝑏𝑣𝑝𝑠𝑖𝑔𝑛𝑎𝑙(0);
3 𝑝𝑒𝑎𝑘𝑠𝑚𝑖𝑛, 𝑝𝑒𝑎𝑘𝑠𝑐𝑜𝑢𝑛𝑡 ←− 0; 𝑑𝑖𝑠𝑡𝑚𝑖𝑛 ←− 𝑘;
4 for 𝑖← 1 to (𝑏𝑣𝑝𝑙𝑒𝑛 − 𝑠𝑡𝑐) do
5 if 𝑏𝑣𝑝𝑠𝑖𝑔𝑛𝑎𝑙(𝑖)>𝑝𝑒𝑎𝑘𝑚𝑎𝑥 then
6 𝑝𝑒𝑎𝑘𝑚𝑎𝑥 ← 𝑏𝑣𝑝𝑠𝑖𝑔𝑛𝑎𝑙(𝑖);
7 𝑝𝑒𝑎𝑘𝑠𝑚𝑖𝑛 ← 𝑝𝑒𝑎𝑘𝑠𝑚𝑎𝑥 − 𝑠𝑡𝑐;
8 Get 𝑣𝑡𝑐𝑚𝑒𝑎𝑛 for [𝑖,𝑠𝑡𝑐];
9 Get 𝑣𝑡𝑐𝑠𝑙𝑜𝑝𝑒 for [𝑖,𝑠𝑡𝑐];

10 if 𝑣𝑡𝑐𝑚𝑒𝑎𝑛≥𝑝𝑒𝑎𝑘𝑚𝑎𝑥 then
11 if 𝑝𝑒𝑎𝑘𝑠𝑐𝑜𝑢𝑛𝑡&& 𝑖− 𝑝𝑒𝑎𝑘𝑠𝑖𝑛𝑑𝑒𝑥(𝑝𝑒𝑎𝑘𝑐𝑜𝑢𝑛𝑡 − 1) < 𝑑𝑖𝑠𝑡𝑚𝑖𝑛 then
12 𝑝𝑒𝑎𝑘𝑠𝑖𝑛𝑑𝑒𝑥(𝑝𝑒𝑎𝑘𝑐𝑜𝑢𝑛𝑡 − 1)← 𝑖;
13 else
14 𝑝𝑒𝑎𝑘𝑠𝑖𝑛𝑑𝑒𝑥(𝑝𝑒𝑎𝑘𝑠𝑐𝑜𝑢𝑛𝑡)← 𝑖;
15 𝑝𝑒𝑎𝑘𝑠𝑐𝑜𝑢𝑛𝑡 ← 𝑝𝑒𝑎𝑘𝑠𝑐𝑜𝑢𝑛𝑡 + 1;
16 𝑝𝑒𝑎𝑘𝑠𝑚𝑖𝑛 ← 0;
17 end
18 else
19 if 𝑝𝑒𝑎𝑘𝑠𝑚𝑖𝑛 && 𝑣𝑡𝑐𝑠𝑙𝑜𝑝𝑒<0 then
20 Actualizar contador, índice y 𝑝𝑒𝑎𝑘𝑠𝑚𝑖𝑛;
21 end
22 end
23 end
24 if 𝑏𝑣𝑝𝑠𝑖𝑔𝑛𝑎𝑙(𝑖)<𝑝𝑒𝑎𝑘𝑚𝑖𝑛 then
25 Realiza la operación inversa para detectar los valles;
26 end
27 end
28 𝑝𝑒𝑎𝑘𝑠𝑡𝑜𝑡𝑎𝑙 ← 𝑝𝑒𝑎𝑘𝑠𝑐𝑜𝑢𝑛𝑡

La figura 5-23 muestra un análisis del impacto en el tiempo de los dos algoritmos

diferentes de detección de picos, considerando el número de muestras en la ven-

tana de procesamiento. En relación con esta complejidad temporal, se observa un

rendimiento lineal para nuestro método LCM, debido a la evaluación de vecinos re-

alizada con cada muestra. En cuanto al algoritmo ADT, se observa un aumento del

tiempo de cálculo entre el 30 % y el 50 % en comparación con LCM con el mayor
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𝑠𝑡𝑐. Esta diferencia se debe principalmente al cálculo obligatorio de la desviación

estándar para toda la señal de la ventana de procesamiento, que es necesaria para

obtener la pendiente variable que utilizará el algoritmo ADT. En relación con las

consideraciones de almacenamiento de memoria en esta etapa, el algoritmo LCM

implementado necesita 2KB de ROM y 32B de RAM. En el caso del ADT imple-

mentado, este algoritmo utiliza 2,5KB de ROM y 64B de RAM.
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Figure 5-23: Análisis del impacto temporal de los algoritmos de detección de picos
considerados.

A partir de esta etapa y teniendo en cuenta los resultados de complejidad temporal

y uso de recursos por parte de los algoritmos evaluados, concluimos que, aunque los

métodos LCM son de los más sencillos, pueden ajustarse a los requisitos de muchas

aplicaciones. Por tanto, se recomienda el uso de estos algoritmos ligeros. Con el fin

de proporcionar una validación de la aplicación real siguiendo estas compensaciones

de extracción de características, la sección 5.2.4.3 presenta los resultados de un caso

de uso real de monitorización de la activación de la VFC.

5.2.4.2 Extracción de características: Información de la VFC

En los sistemas digitales embebidos con restricciones, los análisis de frecuencia

se realizan mediante la DFT. Uno de los algoritmos habituales es la transformada

rápida de Fourier (FFT). Sin embargo, este algoritmo se basa en la suposición de una

entrada muestreada equidistante. En este punto, surgen dos posibilidades basadas

en las necesidades de la aplicación. Si la aplicación no está limitada por ninguna
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restricción de tiempo de inferencia, el sistema puede esperar hasta que se extraigan

suficientes puntos de VFC y sea posible la resolución de frecuencia deseada. Por el

contrario, cuando se necesita una inferencia rápida continua dentro de una ventana

temporal fija, se aplica la interpolación entre las muestras de VFC para restablecer

la coherencia temporal.

Centrándonos en los casos de uso rápido continuo para aumentar el tiempo de re-

spuesta de Bindi, consideramos dos parámetros principales para la evaluación de

esta etapa de extracción de características: el tipo de interpolación y la longitud de

la FFT. En la Fig. 5-24 se muestra un análisis del impacto en el tiempo para las dos

técnicas de interpolación (lineal y polinómica) y la FFT implementada y considerada

para diferentes longitudes de ventana de procesamiento. Como era de esperar, los

métodos polinómicos tienen una mayor complejidad temporal, aunque producen re-

sultados más precisos si se necesita posteriormente la precisión espectral. Obsérvese

que para esta comparación se considera la interpolación cuadrática polinómica de

Lagrange. En cuanto a la FFT, se utiliza un algoritmo de FFT radix-2 de 32 bits

de punto fijo, que proporciona una de las complejidades computacionales más bajas

(𝒪(𝑛 log 𝑛)) y es entonces adecuada para el dispositivo embebido. Cabe destacar

que para todas las longitudes de FFT evaluadas, aplicar la interpolación polinómica

implica duplicar el tiempo de procesamiento respecto a la interpolación lineal. Te-

niendo en cuenta este hecho y que se prefieren las interpolaciones cuadráticas en

el dominio del tiempo para el [268] de la VFC, se puede asumir esta diferencia de

complejidad temporal.
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Figure 5-24: Análisis del impacto temporal basado en diferentes métodos de inter-
polación y en la FFT implementada y considerada.

En esta etapa, debe considerarse un compromiso entre la resolución temporal y la

de frecuencia. Obsérvese que, independientemente de 𝑓𝑠𝑒𝑛𝑠𝑜𝑟, si la longitud de proce-

samiento de la ventana es fija, la resolución de la casilla de frecuencia para el 𝐹𝐹𝑇𝑙𝑒𝑛

elegido no cambiará. Por lo tanto, para mejorar la resolución de frecuencia para una

ventana temporal fija, se aplican técnicas de remuestreo después de la interpolación

en estas situaciones. Por ejemplo, si la VFC se interpola a 100Hz para una ven-

tana temporal fija de cuatro segundos, se obtiene una resolución de 0,39Hz/bin. Sin

embargo, tras aplicar un remuestreo de 1Hz, la resolución de la frecuencia aumenta

hasta 0,25Hz/bin. Tenga en cuenta que para esta última resolución sólo se toman

256 puntos disponibles. En caso de tomar más puntos que la longitud de la ventana,

hay que aplicar un relleno de cero. Así pues, la resolución de tiempo y frecuencia,

así como las técnicas de interpolación y remuestreo, dependen de la aplicación. Este

es un aspecto clave cuando se trata de aplicaciones que requieren la extracción de

información de la frecuencia de la VFC, ya que la banda más baja de interés se

encuentra entre 0,01Hz y 0,04Hz. Por lo tanto, para lograr una capacidad completa

de detección de la banda de frecuencia de la VFC se debe asegurar un mínimo de

0,04Hz/bin. Un valor de resolución de frecuencia superior a este disminuirá dicha

capacidad de detección o separabilidad de las bandas espectrales. Hay que tener en

cuenta que la resolución de la bandeja de frecuencias viene dada por la ecuación 4.7.
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En cuanto a la resolución temporal, hay que tener en cuenta que la duración de la

ventana de procesamiento debe seleccionarse para asegurar la presencia de al menos

dos puntos de VFC. De lo contrario, la interpolación no es posible.

En relación con las consideraciones de almacenamiento de memoria en esta etapa,

se debe tener especial cuidado con los requerimientos de recursos de la FFT, imple-

mentando propiedades in-place y un comportamiento no recursivo. Tenga en cuenta

que los recursos utilizados durante la operación de remuestreo se consideran insignif-

icantes. Para las interpolaciones, ambas consumen hasta 698B de ROM y 10B de

RAM, mientras que la FFT necesita 3KB de ROM y 548B de RAM.

Este último paso es especialmente sensible. Por ejemplo, la interpolación lineal

puede incluso introducir deformaciones en los espectros de potencia resultantes.

En este caso, se recomienda una decisión de diseño basada en la calidad para que

prevalezca la información fisiológica. Así, asumiendo el mismo uso de recursos para

ambos métodos de interpolación y considerando todas las ventajas fisiológicas que

proporciona la interpolación polinómica, se recomienda esta última sobre la lineal.

5.2.4.3 Implementación del caso de uso de VFC

Para dar un caso de uso real e implementar todas las diferentes recomendaciones

concluidas para la última exploración de extracción de características, se presenta

una aplicación específica de activación fisiológica de cuatro segundos de inferencia

rápida. El brazalete está programado con toda la arquitectura detallada de proce-

samiento de señales y las compensaciones tomadas. En este caso, se utilizó un

experimento con seis voluntarios y diez estímulos audiovisuales diferentes, estresa-

dos y no estresados, de un minuto de duración. Estos estímulos fueron previamente

etiquetados y seleccionados por los autores. Después de cada estímulo, los voluntar-

ios autoinformaron de su propio nivel de excitación o excitación que sentían al ver el

vídeo. Para proporcionar una herramienta de validación o una medida de oro frente

a las señales adquiridas por nuestra plataforma, se consideró un sistema sensorial

de grado de investigación.

Para este experimento, se utilizó un 𝑓𝑠𝑒𝑛𝑠𝑜𝑟 de 100Hz y se empleó una ventana

de procesamiento temporal fija de cuatro segundos, que requería un buffer de 400

muestras (1,5KB). Hay que tener en cuenta que para FCs inferiores a 45BPMs,

esta ventana no es aplicable, ya que sólo se pudo encontrar un punto de VFC. Cada
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Figure 5-25: Cadena de datos completa para el procesamiento de una ventana de 4
segundos teniendo en cuenta las compensaciones comentadas.

cuatro segundos se extraen e interpolan los puntos de VFC, a lo que sigue un cálculo

de la FFT y una estimación de la PSD dada por

𝑃𝑆𝐷𝑖 = 2 * |𝑓𝑓𝑡|
𝑠

, (5.18)

donde 𝑃𝑆𝐷𝑖 es la densidad espectral de potencia para una casilla de frecuencia

específica 𝑖, |𝑓𝑓𝑡| es la magnitud del espectro al cuadrado y 𝑠 es la suma de muestras

al cuadrado de la función de ventana utilizada. En concreto, para hacer frente a la

pérdida de festoneado y a los efectos de la valla, se aplica una ventana superior plana.

Se utiliza un fijo 𝐹𝐹𝑇𝑙𝑒𝑛 de 256 puntos, lo que lleva a una resolución de 0,39Hz/bin.

Esta resolución es suficiente para observar la actividad de las bandas de frecuencia

más bajas (hasta 0,4Hz) y las más altas (desde 0,4Hz hasta 1Hz). Hay que tener

en cuenta que en caso de tener menos de 256 puntos después de la interpolación, se

aplica el relleno cero. El mismo procedimiento digital se aplica para la herramienta

de validación y Bindi. Teniendo en cuenta todos los datos proporcionados en las

secciones anteriores, la implementación final de todas las diferentes etapas para esta

aplicación específica requiere hasta 2KB de RAM, 6KB de ROM y tarda unos 20

milisegundos en proporcionar una estimación válida de la VFC desde la finalización

de una ventana de procesamiento, Figura 5-25.

La tabla 5.9 muestra los resultados recopilados obtenidos para dos estímulos de

estrés (𝐻) y no estrés (𝐿) seleccionados arbitrariamente para los seis voluntar-

ios diferentes. 𝑃 𝐺𝑓1 es el cociente promediado entre el primer bin de frecuencias

(0,39Hz) y el segundo bin de frecuencias (0,78Hz) durante el estímulo utilizando la

señal de la herramienta de validación, mientras que 𝑃 𝐺𝑓2 es el observado para el

cociente promediado entre el segundo bin de frecuencias y la suma del primero y

el segundo. La cuarta y la quinta columnas son los valores análogos tomados de

Bindi. Estos resultados muestran una disminución en el primer factor para todos
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Table 5.9: Resultado de la medición del caso de uso específico del detector de estrés
HRV.

𝑇𝑦𝑝𝑒 𝑃 𝐺𝑓1 𝑃 𝐺𝑓2 𝑃 𝐵𝑓1 𝑃 𝐵𝑓2 𝜀 [%(𝜀𝑓1, 𝜀𝑓2)]

1𝐻 5.28 0.15 5.27 0.16 (0.18,6.66)
1𝐿 5.05 0.16 4.81 0.17 (4.75,6.25)
Δ -0.23 +0.01 -0.46 +0.01
2𝐻 4.09 0.24 4.29 0.20 (4.88,16.66)
2𝐿 3.83 0.27 3.45 0.29 (9.92,7.41)
Δ -0.26 +0.03 -0.84 +0.09
3𝐻 5.18 0.16 5.17 0.16 (0.19,0.00)
3𝐿 4.40 0.19 4.28 0.21 (2.72,10.52)
Δ -0.78 +0.03 -0.90 +0.05
4𝐻 5.27 0.15 5.32 0.15 (0.09,0.00)
4𝐿 5.16 0.16 5.12 0.17 (0.7,6.25)
Δ -0.11 +0.01 -0.20 +0.03
5𝐻 5.07 0.16 4.82 0.17 (4.93,6.25)
5𝐿 4.64 0.17 4.63 0.18 (0.21,5.88)
Δ -0.43 +0.01 -0.19 +0.01
6𝐻 4.98 0.16 4.96 0.17 (4.03,6.25)
6𝐿 4.84 0.17 4.46 0.20 (7.85,17.64)
Δ -0.14 +0.01 -0.50 +0.03

los pacientes desde el estímulo de estrés hasta el de no estrés. Por el contrario, hay

un incremento en el segundo factor. Esto está en consonancia con la teoría del SNA.

Como se comentó en los capítulos 2 y 4, las bandas de frecuencia más bajas están

dominadas por el SNS, que se encarga de la respuesta de lucha o huida del cuerpo,

mientras que el SNP está relacionado con las bandas más altas y es responsable de

controlar las condiciones de relajación (descanso y digestión). Los errores entre los

resultados de la validación y los resultados de la también se proporcionan en la tabla

5.9 . Estos errores son bajos (𝜀 < 10%), excepto en casos como 2𝐻 o 6𝐿, en los que

los fuertes artefactos de movimiento presentes en la señal de Bindino se limpiaron

como se esperaba, dando lugar a segmentos de señales localmente contaminados, lo

que afecta directamente al proceso de detección de picos y, por tanto, a la extracción

de la VFC, véase la Figura 5-26.

Al llevar a cabo este caso de uso particular, se han implementado con éxito las

diferentes compensaciones detalladas que se aplican a las aplicaciones de inferencia

rápida. A pesar de que el caso de uso presentado no alcanza la capacidad completa de

detección de la banda de frecuencia de la VFC, el objetivo de la detección rápida del

estrés se logra utilizando una baja cantidad de recursos a expensas de la resolución
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Figure 5-26: Efectos de artefactos de movimiento mostrados en un segmento del
estímulo audiovisual de estrés del voluntario 2.

de la frecuencia.

5.2.5 Análisis del consumo de energía
La gestión del consumo de energía es un requisito en el diseño de un sistema

wearable. En Bindi, una medición precisa del estado de carga de la batería y de la

autonomía de los dos dispositivos wearables es esencial para garantizar que el sistema

funcione cuando sea necesario. Esta sección proporciona un análisis cuantitativo del

consumo de corriente para la Brazalete. Este análisis se realiza midiendo las acciones

que más energía demandan a través de la parte de monitorización del dispositivo.

Así, se mide por separado la corriente eléctrica consumida por la adquisición de

datos a través de cada sensor fisiológico. Además, también se mide el consumo de

energía que se produce al hacer uso del zumbador en intensidades suaves, medias

y fuertes. Así, se optó por medir el consumo de energía debido a la comunicación

y adquisición de datos de los sensores, que son esenciales para el sistema y están

intrínsecamente relacionados con el diseño hardware específico de los dispositivos.

Los resultados obtenidos en el análisis del consumo de corriente para el Bindi

1.0 aparecen en la Figura 5-27. Los modos de vibración son las acciones que más

corriente consumen, donde cuanto mayor es la vibración producida, mayor es la

corriente requerida, como era de esperar. Sin embargo, el impacto del zumbido

en la autonomía es reducido, ya que se activa durante poco tiempo en situaciones
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de riesgo, por lo que su activación suele ser esporádica. Los sensores SKT y GSR

también producen un pequeño incremento desde el estado de reposo. Sin embargo, el

sensor PPG tiene un mayor impacto que los otros sensores. Así, podemos concluir

que el cuello de botella actual del sistema, en términos de consumo de energía y

tiempo de funcionamiento, es el sensor PPG. A pesar de este hecho, el bajo consumo

de energía en el estado de reposo hace que la duración de la batería Brazalete sea

de aproximadamente 40 horas cuando se utiliza una batería de 500 mAh. Tenga en

cuenta que estos cálculos se basan en situaciones sin alarma.
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Figure 5-27: Consumo medio de corriente en el Brazalete [11].

5.3 Conclusión
En este capítulo se han expuesto las principales aportaciones de esta investigación

en relación con el diseño de sistemas vestibles orientados a la adquisición y monitor-

ización fisiológica continua. Ha quedado claro que el diseño de sistemas wearables

para la monitorización continua de señales fisiológicas y el diseño e integración em-

bebida de procesos relacionados con la computación afectiva es una tarea desafiante

que requiere un cuidadoso equilibrio entre los recursos embebidos, el consumo de

energía y el tiempo de respuesta del sistema. Además, presentamos diferentes tra-

bajos que contribuyen a la implementación embebida de procesos relacionados con el

aprendizaje automático en el borde, es decir, en nuestra umbrionada. Cabe destacar

que la cadena completa de procesamiento de datos para todos los sensores, desde la

adquisición hasta la clasificación, está siendo mejorada y ampliada para considerar

y dimensionar el impacto embebido, así como sus limitaciones.
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Figure 5-28: La ventaja competitiva de Bindi sobre sus principales y más directos
competidores.

En la sección 5.1 se han aportado los antecedentes técnicos necesarios para con-

textualizar los diferentes aspectos destacados que puede ofrecer la tecnología de

Bindi. La figura 5-28 presenta un resumen compacto sobre las ventajas competiti-

vas de Bindi respecto a sus principales y más directos competidores. Así, podemos

concluir que las soluciones tecnológicas disponibles revisadas para combatir la vio-

lencia de género, las orientadas a un caso de uso general, o incluso las soluciones

con objetivos diferentes pero tecnológicamente comparables a Bindi, no ofrecen las

mismas funcionalidades ni se aprovechan de la tecnología de vanguardia. El Bindi

tiene un gran potencial para ser una herramienta tecnológica efectiva para prevenir

y combatir la Violencia de Género.

A lo largo de la Sección 5.2, se han diseccionado cuidadosamente las arquitecturas

de hardware y firmware Brazalete para mostrar en detalle cada uno de los bloques

de procesamiento digital, tanto los que están completamente cerrados a nivel de

implementación e integración como los que aún están en fase de diseño y desarrollo.

Dentro de este contexto y centrándonos en el aspecto wearable, en esta sección se

ha presentado un sistema PPG SQA capaz de identificar segmentos de información

fisiológica de baja calidad, sin embargo, no se ha presentado ningún trabajo rela-
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cionado con la corrección de artefactos de movimiento o la eliminación de dichos

segmentos. Al buscar este tipo de sistemas en la comunidad científica e indepen-

dientemente de la proliferación de sistemas PPG SQA [241], existen multitud de

sistemas de eliminación de artefactos de movimiento (MAR) propuestos en la lit-

eratura. Este hecho se basa en el anhelo de recuperar la señal PPG completa, sin

tener en cuenta el tipo y la cantidad de ruido presente. Incluso se han creado difer-

entes iniciativas y retos a lo largo de la última década para fomentar el desarrollo

de nuevos algoritmos y métodos de MAR. Por ejemplo, la Copa IEEE de Proce-

samiento de Señales de 2015 se basó en un conjunto de datos de PPG capturados

en laboratorio utilizando una cinta de correr para generar diferentes tipos de arte-

factos de movimiento y pretendía ofrecer un marco general para tratar el MAR en

la monitorización de la frecuencia cardíaca [269]. Sobre esta base, existen dos per-

spectivas diferentes. Por un lado, al centrarse en casos de uso offline, la aplicación

de las técnicas MAR puede ser factible al considerar una gran cantidad de recursos

informáticos disponibles. Sin embargo, estos algoritmos consideran la totalidad de

la señal para sus líneas de procesamiento, y en algunos casos la reconstrucción o ex-

tracción de una medida válida a partir de una señal ruidosa no es posible. Por otro

lado, las aplicaciones para llevar puestas que tienen como objetivo la monitorización

continua de la PPG están sujetas al requisito de utilizar pocos recursos y consumir

poca energía. Esto deja un fino vacío para implementar algunos de los mejores y

más pesados algoritmos computacionales de SAM, como el análisis de componentes

independientes, la descomposición de modo empírico y los métodos basados en el

aprendizaje profundo [270]. Por lo tanto, la evaluación de la calidad de la señal

a través de metodologías SQA antes de la aplicación de cualquier algoritmo MAR

es esencial cuando se pretende la monitorización continua de PPG y otras señales

relacionadas con el corazón [271]. A pesar de este último hecho, en nuestro grupo

de investigación se ha iniciado una investigación relacionada con la propuesta de

nuevas técnicas de MAR embebidas [230], con la intención de contribuir a este tema

de investigación en particular.

En cuanto a los procesos detallados de extracción de características, hay que tener

en cuenta ciertas limitaciones del sistema propuesto.En primer lugar, se pueden

aplicar diferentes técnicas de procesamiento de señales. Por ejemplo, para tratar los
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datos de VFC con espacios irregulares, se podría aplicar el método de periodograma

de Lomb-Scargle en lugar de la FFT. En segundo lugar, el consumo de energía

específico de cada una de las técnicas de extracción de características debe analizarse

adecuadamente para identificar posibles cuellos de botella en la arquitectura de

procesamiento de señales digitales. Esto último se está realizando actualmente y se

están preparando más publicaciones.
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Capı́tulo 6
Un nuevo conjunto de datos para el

reconocimiento de emociones: WEMAC

En el capítulo 4 presentamos el trabajo realizado para el diseño de un sistema de

detección de miedo utilizando bases de datos públicas. Durante el desarrollo de estos

sistemas se identificaron diferentes limitaciones y se confirmó que, para llegar a un

sistema óptimo de reconocimiento del miedo, se necesita una nueva base de datos

centrada en la detección del miedo. Dicha base de datos debería incluir factores

clave ya destacados en los capítulos anteriores, como:

• El uso de la tecnología de inmersión emocional.

• La modificación de la metodología de etiquetado para considerar la perspectiva

de género.

• Una distribución de estímulos adecuadamente equilibrada con respecto a las

emociones objetivo.

• Un mayor número de participantes.

• La integración de un proceso de recuperación basado en las señales fisiológicas

de los voluntarias para cuantificar y aislar la activación emocional entre los

estímulos.

Además, atendiendo a uno de los principales objetivos de esta investigación, como

es la generación de nuevos mecanismos de prevención y lucha contra la Violencia

de Género, esta base de datos debe ser concebida teniendo en cuenta las partic-

ularidades necesarias relacionadas con este perfil específico para llevar a cabo un

diseño metodológico adecuado. En este contexto, este Capítulo presenta la base de
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datos UC3M4Safety, cuyo objetivo final es el desentrañamiento de los mecanismos

de activación de las Víctimas de Violencia de Género en situaciones de violencia.

Este objetivo se pretende alcanzar mediante la generación y realización de diferentes

experimentos:

• Experimento de preetiquetado. Esto generó los dos primeros conjuntos de

datos, que están publicados en [272] y [273]. El objetivo era estudiar y vali-

dar la eficacia de un conjunto de estímulos audiovisuales a la hora de generar

emociones discretas, concretas y únicas. Este experimento se centró en encon-

trar estímulos que fueran capaces de provocar la misma reacción emocional al

mayor número de personas posible. Además, este estudio permitió analizar los

métodos de clasificación de estos estados emocionales, la comprensión de los

aspectos críticos por parte de los participantes y la influencia del género en la

detección del miedo [82].

• Experimentos de laboratorio con víctimas de la violencia no de género. Estos

experimentos generaron cuatro conjuntos de datos. El primero se denomina

"Conjunto de datos de computación afectiva multimodal sobre mujeres y emo-

ciones" (WEMAC). Consisten en experimentos realizados en un entorno de

laboratorio sólo con mujeres voluntarias que nunca han sufrido violencia de

género. En concreto, se utiliza un conjunto reducido de estímulos, extraídos

de los primeros conjuntos de datos, junto con la adquisición de información

fisiológica y física (voz y audio). Aparte del indudable valor, para el área de

la informática afectiva, de generar un conjunto de datos con reacciones emo-

cionales en las mujeres mientras se registran sus variables fisiológicas y físicas,

el desentrañamiento de las emociones de miedo mediante el seguimiento de

las reacciones fisiológicas y físicas de las mujeres que no son Víctimas de Vi-

olencia de Género es también necesario para comprender estas variaciones y

patrones bajo perfiles poblacionales no específicos. Esta investigación aborda

estos conjuntos de datos centrándose en los datos fisiológicos y multimodales.

• Experimentos de laboratorio con víctimas de la violencia de género. En el

momento de redactar este informe de doctorado, estos experimentos aún es-

tán en desarrollo. Generarán cuatro conjuntos de datos adicionales. Se basan

en la misma metodología experimental seguida con las víctimas de la vio-
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lencia no de género. Cabe destacar que se ha prestado especial atención a

evitar la revictimización de las Víctimas de Violencia de Género, incluyendo el

seguimiento psicológico y el trabajo en su recuperación emocional de la violen-

cia. En estos experimentos, el objetivo es comparar las respuestas fisiológicas

y multimodales con los experimentos anteriores con Víctimas de Violencia no

de Género.

• Los experimentos Into-the-Wild con ambos perfiles, Víctimas de Violencia de

Género y Víctimas de Violencia No de Género. Hasta la fecha, estos experi-

mentos están en desarrollo. Generarán al menos diez conjuntos de datos más.

Estos experimentos están pensados para ser realizados durante la vida cotid-

iana de algunos de los voluntarias que participaron en los experimentos de

laboratorio. El objetivo es obtener un comportamiento fisiológico y multi-

modal real para seguir estudiando y caracterizando las emociones etiquetadas

a lo largo de los diferentes días.

En cuanto a la estructura de este capítulo, comenzamos por ofrecer una explicación

exhaustiva de la metodología y el desarrollo seguidos durante la generación de los ex-

perimentos de laboratorio para las Víctimas de la violencia no sexista. Al igual que

en el Capítulo 4, también se presenta el análisis de la distribución del etiquetado au-

todeclarado para este conjunto de datos. A este análisis le sigue una exploración de

la respuesta fisiológica para dar una visión adecuada de los patrones fisiológicos, las

recuperaciones y otras particularidades observadas durante los experimentos. Esta

exploración concluye con la presentación de los primeros resultados de detección del

miedo basados en dicha información. Las métricas obtenidas se utilizan y se fusio-

nan con los resultados del habla, lo que proporciona una perspectiva multimodal del

problema. Esto último se ha realizado en un trabajo de investigación multidisciplinar

con los miembros de la UC3M4Safety expertos en Teoría de la Señal y Comunica-

ciones. Cabe destacar que estos son los primeros resultados de reconocimiento de

miedo utilizando información multimodal recogida en nuestra base de datos y que

ya han sido presentados en [11].
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6.1 Métodos, herramientas y estímulos
Como ya se ha mencionado, este capítulo utiliza la información recogida en el

conjunto de datos WEMAC. El conjunto de datos contiene un total de 104 mujeres

voluntarias que fueron expuestas a 14 estímulos audiovisuales validados relacionados

con la emoción. Este conjunto de datos está destinado a estar disponible pública-

mente a través de diferentes versiones. En particular, esta investigación utiliza los

datos contenidos en la primera versión, que representan un total de 47 de las 104

voluntarias. Se realizó un número total de 123 experimentos, de los cuales 104

grabaciones se consideraron válidas (sin mal funcionamiento de los sensores). Todos

ellos se realizaron entre octubre de 2020 y julio de 2021.

En cuanto a la metodología diseñada para la experimentación, en la Figura 6-1

se muestra un esquema simplificado para cada voluntario y estímulo expuesto. El

Comité de Ética de la Universidad Carlos III de Madrid aprobó este protocolo en

cuanto a los aspectos éticos y de protección de datos. Antes del experimento, a los

voluntarias reclutados se les explican los diferentes pasos a seguir y se les entrega una

serie de documentos, como un consentimiento informado, el tratamiento de los datos

personales y un cuestionario general. Como se especifica en la sección 2.3.3, este

cuestionario puede proporcionar información adicional relacionada con la cognición,

la valoración, la atención, los rasgos de personalidad, el género y la edad. Los datos

recogidos fueron: grupo de edad, actividad física reciente o medicación que puede

alterar la respuesta fisiológica del participante, cargas emocionales autoidentificadas

debido a la situación laboral, económica y personal, y sesgo del estado de ánimo

(miedos, fobias, experiencias traumáticas). Nótese que el análisis multivariante de

estos factores está fuera del alcance de esta investigación.

Tras la lectura de la documentación, se realiza la puesta a punto del equipo, que

consiste en:

• Oculus® Rift-S Headset1 utilizado para maximizar la experiencia inmersiva

y, en consecuencia, obtener una mejor elicitación de emociones. Esta es la

plataforma a través de la cual se muestran los diferentes estímulos a los vol-

untarias tanto en formato 2D como 3D.

• Se empleó un sistema de medición estándar para adquirir diferentes señales

1https://www.oculus.com/rift-s/
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Figure 6-1: Metodología experimental seguida durante la elaboración del conjunto
de datos WEMAC. Antes y durante la experimentación.

fisiológicas. En concreto, éstas fueron: PPG de dedo, GSR de muñeca ven-

tral, SKT de antebrazo, electromiografía trapezoidal, respiración torácica y

movimiento inercial de la muñeca mediante un acelerómetro. Proporciona

una medida de oro que se puede comparar con el resto de los sensores, como

la pulsera de Bindi. De hecho, las señales PPG y GSR obtenidas de BioSig-

nalPlux y Bindi han sido comparadas previamente y correlacionadas con éxito

en las publicaciones [159] y [234].

• Bindi con PPG de muñeca dorsal, GSR de muñeca ventral y SKT. La arquitec-

tura de hardware y software y el diseño detallado de este elemento se detallan

en el capítulo 5.

• Un sensor GSR adicional que se integrará en la siguiente iteración del brazalete

(Bindi 2.0). El diseño del hardware y el software de este nuevo sensor están

fuera del alcance de este documento, aunque está en marcha una publicación

[235].

La sincronización de todos los diferentes sensores de adquisición junto con las etapas

del experimento se lleva a cabo mediante un ordenador portátil que ejecuta un

programa basado en el framework Unity®. Este trabajo fue realizado por el equipo

UC3M4Safety. Hay que tener en cuenta que todos los dispositivos que detectan

información fisiológica funcionaban a una frecuencia de muestreo de 200 Hz.

Finalmente, el último paso en la preparación del experimento es una demostración

de etiquetado de autoevaluación, en la que los voluntarias se acostumbran al entorno
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de realidad virtual y conocen mejor las diferentes categorías y particularidades del

etiquetado. Los elementos recopilados durante el proceso de autoetiquetado son,

por orden de aparición

• Muestra de audio grabada a través del micrófono de los auriculares Oculus,

justo después de la visualización del videoclip relacionado con la emoción. Se

pide a los voluntarias que revivan las emociones sentidas durante la visual-

ización del estímulo relacionado con la emoción. Para esta investigación, se

supone que la correspondencia es suficientemente sólida entre ambos instantes.

Nótese que, aunque esta última suposición puede considerarse como una sim-

plificación que se aplica para una primera manipulación de datos, necesitará

una mayor validación en futuros trabajos.

• Maniquíes modificados SAM para el mapeo de las dimensiones afectivas PAD,

como se detalla en la sección 2.4 del capítulo 2.

• Nivel de familiaridad con respecto a la emoción sentida y a la situación mostrada

en el video-clip. Ambas se preguntaron utilizando una escala Likert de 9 pun-

tos, al igual que en el caso de los SAMs.

• Gusto por el vídeo con tres posibilidades: sí, neutro, no.

• Selección de una emoción discreta de un total de doce. Se obtuvieron a partir

del estudio de preetiquetado realizado por el equipo UC3M4Safety, que utilizó

los dos primeros conjuntos de datos y fue publicado y detallado en [82], [274]

y [275].

Durante el experimento, como ya se ha detallado, cada voluntario visualizó un

total de 14 estímulos audiovisuales en 2D o 360º. Estos estímulos se obtuvieron

considerando 28 estímulos audiovisuales de un pool de estímulos mayor que contiene

un total de 42 estímulos validados por más de 1332 personas (811 mujeres, 521

hombres) durante el primer experimento detallado de la base de datos UC3M4Safety

[57,82]. Obsérvese que estos estímulos audiovisuales de 28 se seleccionaron basándose

en tres premisas principales: el mayor acuerdo de etiquetado emocional discreto

observado en las mujeres durante el experimento de preetiquetado, el objetivo de

una duración adecuada del experimento de laboratorio y una distribución equilibrada

de miedo frente a no-miedo considerando un modelo PA como el realizado para la

selección de estímulos de la base de datos MAHNOB explicado en la sección 4.2.1
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del capítulo 4. Así, se pueden aplicar dos lotes diferentes, con 14 estímulos por lote.

Esta cantidad de estímulos audiovisuales, junto con la lectura de la documentación,

la configuración del equipo y la demostración de autoevaluación, solía llevar de 1 a

1,5 horas por voluntario, mientras que el procesamiento de los datos implica de 3 a

8 horas. La tabla 6.1 informa de la estructura ordenada de estos lotes.
Estímulo Emoción Cuadrante (PA) Longitud Formato Lote

1 Joy 1 1’26” 2D 1
2 Fear 2 1’20" 3D 1
3 Sadness 3 1’59" 2D 1
4 Anger 2 1’03" 3D 1
5 Fear 2 1’35" 2D 1
6 Calm 4 1’ 3D 1
7 Anger 2 1’ 2D 1
8 Fear 2 23" 2D 1
9 Disgust 3 40" 2D 1
10 Fear 2 2’ 3D 1
11 Joy 1 1’41” 2D 1
12 Fear 2 1’20" 2D 1
13 Gratitude 4 1’40" 2D 1
14 Fear 2 1’27" 2D 1
15 Fear 2 1’52" 2D 2
16 Joy 1 1’28” 2D 2
17 Fear 2 46” 2D 2
18 Sadness 3 45" 2D 2
19 Fear 2 1’33” 3D 2
20 Calm 4 1’ 2D 2
21 Anger 2 1’59” 2D 2
22 Fear 2 1’14" 2D 2
23 Disgust 3 1’36" 2D 2
24 Fear 2 2’ 3D 2
25 Surprise 1 1’41” 2D 2
26 Fear 2 1’06" 2D 2
27 Gratitude 4 1’30" 2D 2
28 Fear 2 1’59” 3D 2

Table 6.1: Lista de los estímulos audiovisuales utilizados en el conjunto de datos
WEMAC.

Para el primer lote, la duración de los estímulos está en 1’32”±46”, mientras que

para el segundo lote la duración está en 1’46”±44”. Se puede observar que ambos

lotes tienen 8 estímulos que pertenecen al segundo cuadrante PA, lo que se hizo a

propósito para mantener un equilibrio adecuado entre las emociones parecidas al

miedo y las que no lo son. Nótese que la premisa de equilibrio considera el modelo

PA, en lugar del PAD, para facilitar y simplificar dicha tarea. Debido a este hecho,

los estímulos preetiquetados como ira se consideraron también dentro del segundo

cuadrante, estando así dentro de la clase positiva para el etiquetado de la verdad

básica dimensional. Nótese que todos los voluntarias del mismo lote los visualizaron

en el mismo orden.
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Antes de la presentación de cada estímulo relacionado con la emoción, también se

utiliza un clip neutral específico para facilitar la recuperación emocional. Estos se

seleccionan aleatoriamente de un conjunto mayor proporcionado por el laboratorio

de psicofisiología de Stanford [195]. Del mismo modo, pero al final de la autoevalu-

ación, se presentan también escenas de recuperación de 360º. Estas son seleccionadas

por consenso unánime del equipo de investigación. La principal diferencia entre los

clips neutros y los de recuperación es que mientras los primeros son totalmente

pasivos, es decir, no hay un seguimiento de la recuperación, los segundos imple-

mentan realmente un seguimiento fisiológico. Esto permite la evaluación en línea

de la estabilización de las tres variables medidas. Este proceso se realiza utilizando

las mediciones fisiológicas adquiridas por la pulsera de Bindi. Específicamente para

estos primeros experimentos, implementamos un controlador de estabilización de la

recuperación fisiológica en el SoC de la pulsera, que funcionó en base a ventanas de

procesamiento de datos temporales segmentados. Dicho sistema realiza un proceso

de filtrado básico online de las señales, extrae las BPMs de la frecuencia cardíaca

calculada, y verifica la estabilización de las señales durante más de cuatro ventanas

de procesamiento consecutivas. Una vez alcanzada la estabilización de al menos

dos de las tres variables, la pulsera notificó mediante BLE al ordenador central que

ejecutaba el marco de realidad virtual. Tenga en cuenta que la implementación de

la recuperación fisiológica también fue seguido por una tesis de licenciatura bajo mi

supervisión [276]. Su objetivo era implementar nuevos mecanismos de recuperación

hacia la mejora de la actual durante los experimentos. Las nuevas características y

mejoras implementadas se aplicaron incluso a otros proyectos que se están desarrol-

lando dentro del grupo de investigación.

6.2 Exploración de respuestas de etiquetado au-

todirigidas
Como se ha detallado en la sección anterior, la primera versión del conjunto de

datos WEMACcontiene datos de 47 voluntarias. En concreto, 32 y 15 voluntarias

visualizaron el primer y segundo lote, respectivamente. Debido a las diferentes

metodologías de etiquetado consideradas y basándose en los trabajos anteriores que

utilizan los datos públicos de referencia explicados en el capítulo 4, se ha empleado
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tanto el etiquetado discreto como el dimensional. Obsérvese que ambos son bina-

rizados para proporcionar un problema de clasificación binaria similar al del miedo.

Así, todas las etiquetas discretas que no fueron identificadas como miedo se codifican

como la clase negativa, mientras que las evaluadas como miedo se establecen como

la clase positiva. El mismo proceso se realiza para la metodología de etiquetado

dimensional, pero siguiendo el método de binarización de miedo propuesto, véase la

sección 2.3.4 del capítulo 2, tal y como se hace para las bases de datos públicas de

referencia, véase el capítulo 4.

Las figuras 6-2 y 6-3 muestran el equilibrio de clases discreto y dimensional bina-

rizado para las etiquetas autodeclaradas de los 47 voluntarias. Obsérvese que en

estas figuras también se representa el balance de clases de la verdad terrestre por

lote. En promedio, para la verdad básica, ambos lotes poseen 53, 57% y 46, 43% de

clases negativas y positivas, respectivamente. El balance medio para las etiquetas de

autoevaluación dimensional es de 55, 80% y 44, 20%, mientras que para las etiquetas

de autoevaluación discreta es de 60, 47% y 39, 53% para las clases negativas y posi-

tivas, respectivamente. Sin embargo, la principal diferencia se obtiene al comparar

la desviación estándar, que asciende a 15, 22% para las etiquetas dimensionales y a

7, 84% para las etiquetas discretas. Aunque el balance de clase promediado de los

autoinformes dimensionales está más cerca del balance de clase dorado, su desviación

es dos veces mayor que el balance de clase promediado de los autoinformes discretos,

lo que está directamente relacionado con la concordancia de etiquetado de los difer-

entes 47 voluntarias. En este contexto, también definimos un umbral de 25, 00% para

identificar a los voluntarias cuyo balance de clase se vio afectado por una desviación

de 1, 5 (igual o superior) al balance de clase dorado, que identificamos como valores

atípicos de etiquetado. Obsérvese que se trata de una simplificación de primera

aproximación, ya que podrían realizarse más análisis de datos fisiológicos con dichos

valores atípicos para caracterizar adecuadamente sus reacciones emocionales. Por lo

tanto, los voluntarias que alcanzaron dicho umbral están marcados entre paréntesis.

Para el etiquetado discreto se identificaron hasta cinco voluntarias (5, 6, 15, 33 y 40),

y para el etiquetado dimensional se identificaron hasta nueve voluntarias (3, 5, 6, 13,

20, 21, 22, 40, 42). Cabe destacar las diferencias de equilibrio de clases observadas

por voluntario al considerar ambas metodologías. Por ejemplo, el tercer voluntario
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Figure 6-2: Distribución de clases para el mapeo de miedo binario sobre los autoin-
formes subjetivos discretos en WEMACpara todas las 47 voluntarias consideradas,
y la distribución de clases original prevista en el experimento: G2 y G1 para el
segundo y primer lote, respectivamente.

muestra un equilibrio de 57/43% aproximadamente para el etiquetado discreto, y un

equilibrio de 85/25% para la evaluación dimensional. Este hecho sugiere una difer-

ente comprensión y entendimiento de cada una de estas metodologías de etiquetado,

lo que puede dar lugar a diferentes sistemas de aprendizaje automático cuando se

utiliza una u otra. Esta es la razón principal que nos llevó a trabajar con ambos

enfoques.

Siguiendo el mismo análisis de esquemas para este conjunto de datos que el aplicado

a las bases de datos públicas de referencia en el capítulo 4, se han evaluado las cor-

relaciones interindividuales de las etiquetas para comprobar si todos los voluntarias

etiquetan cada estímulo relacionado con la emoción. En este caso, los resultados

obtenidos tras una prueba de Levene y una prueba de Kruskal-Wallis para el etique-

tado discreto binarizado proporcionaron resultados diferentes. La primera rechazó

la hipótesis nula de que las varianzas son iguales en todos los voluntarias (p<0,001),

mientras que la segunda no la rechazó (p>0,001). Por el contrario, los mismos

métodos rechazaron la hipótesis nula para las etiquetas dimensionales binarizadas

(p<0,001). Esta diferencia es una consecuencia de la conclusión final extraída de las

figuras anteriores, ya que indica que, al menos para la metodología de etiquetado

discreto, no hay pruebas suficientes para afirmar que las varianzas sean diferentes
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Figure 6-3: Distribución de clases para el mapeo binario del miedo sobre los autoin-
formes subjetivos dimensionales en WEMACpara todas las 47 voluntarias consider-
adas, y la distribución de clases original prevista en el experimento: G2 y G1 para
el segundo y primer lote, respectivamente.

entre los voluntarias. Por tanto, este hecho sugiere que cada una de las metodologías

está caracterizando aspectos diferentes de las emociones, lo que está en consonancia

con la información aportada en el Capítulo 2 al afirmar que existen ambos modelos

pero cada uno pretende explicar rasgos diferentes de las emociones [48]. Nótese que

el conjunto de etiquetas binarizadas presenta una distribución no normal y que el

nivel de significación se fijó en p<0,05.

Tras el análisis de la varianza, también se aplica la correlación de Spearman para

este conjunto de datos. Sin embargo, debido a la diferencia observada anterior-

mente, se muestran las matrices no promediadas para demostrar gráficamente el

efecto y la consecuencia interindividual real. En concreto, la Figura 6-4 presenta

la inter-correlación a través de los 47 voluntarias para ambas metodologías. Estas

matrices proporcionan una información unitaria de los sujetos en relación con las

diferencias de etiquetado. Al comparar las matrices de intercorrelación, podemos

detectar algunas regiones comunes en ambas. Aunque se puede observar que la ma-

triz de intercorrelación discreta posee un color gris más claro, lo que indica que las

correlaciones son ligeramente más positivas, no hay una conclusión diferencial clara

analizando únicamente estas matrices. Por lo tanto, los valores p correspondientes

a dichas matrices de correlación se representan en la figura 6-5. En este caso, hay
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Figure 6-4: Intercorrelación de Spearman uno a uno entre los sujetos de los 47
voluntarias para ambas metodologías de etiquetado: a) discreta, y b) dimensional
(PAD).

una clara distinción entre ambas metodologías. El etiquetado discreto muestra una

identificación de color negro para la mayoría de los voluntarias, lo que indica un

valor p inferior a 0,1. Por el contrario, la autoevaluación dimensional no informa de

este comportamiento. Este hecho apoya las conclusiones anteriores y sugiere que la

asociación o concordancia entre las etiquetas binarias de miedo de los voluntarias

dentro del caso discreto es más fuerte que con la metodología dimensional. Por

favor, para contextualizar este análisis, ténganse en cuenta las siguientes dos consid-

eraciones: a) los voluntarias de ambos lotes fueron utilizados indistintamente, y b)

este análisis sirve como estudio preliminar para evaluar la concordancia dentro de

la misma metodología y las diferencias con respecto a ambas, sin embargo, se puede

continuar profundizando en las diferencias específicas de los voluntarias uno a uno

y/o incluso aplicando diferentes métodos estadísticos.
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Figure 6-5: Valores P obtenidos a partir de la intercorrelación de sujetos de Spear-
man uno a uno a través de los 47 voluntarias para ambas metodologías de etiquetado:
a) discreto, y b) dimensional (PAD).

Con el fin de proporcionar una perspectiva individual promediada para el acuerdo,

se muestran las Figuras 6-6 y 6-7 promediadas. Los resultados obtenidos no rechazan

la hipótesis nula en promedio para cada uno de los 47 voluntarias, lo que indica

que no hay pruebas suficientemente sólidas para sugerir que existe una asociación

entre las etiquetas binarias de miedo de los voluntarias de forma inequívoca. Por

ejemplo, los valores p medios son de 0,15 y 0,31 para los casos discreto y dimensional,

respectivamente. Así pues, aunque hay que señalar que se trata de un resultado

promediado, la conclusión extraída está en consonancia con las anteriores. Obsérvese

que los voluntarias que muestran los valores p promediados más altos son, en general,

los que poseían las incoherencias de etiquetado indicadas en las figuras 6-2 y 6-3.

El análisis realizado en esta sección sugiere que la metodología de etiquetado dis-

creto supera, en términos de acuerdo, a la evaluación dimensional. Esta conclusión

no significa estrictamente que un sistema entrenado por separado con ambas eti-

quetas vaya a tener la misma diferencia de rendimiento, ya que las etiquetas au-

todeclaradas siempre se ven afectadas y sesgadas por procesos cognitivos, a difer-

encia de las respuestas fisiológicas, tal y como se detalla en el Capítulo 2. Por lo

tanto, los diferentes resultados obtenidos en este estudio de equilibrio de estímulos y

consideración de etiquetas deben contextualizarse también al evaluar los resultados

obtenidos para los sistemas de aprendizaje automático basados también en ambas

metodologías de etiquetado.
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Figure 6-6: Valores 𝑝 promediados para todos los voluntarias considerados y sus
etiquetas aplicando la correlación de Spearman para sus etiquetas de mapeo binario
de miedo basadas en PAD.
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Figure 6-7: Valores 𝑝 promediados para todos los voluntarias considerados y sus
etiquetas aplicando la correlación de Spearman para sus etiquetas de mapeo binario
del miedo basado en la discreción.

6.3 Exploración de la respuesta fisiológica
En esta sección, llevamos a cabo una exploración de la respuesta fisiológica para dar

una visión adecuada de los patrones fisiológicos, las recuperaciones y otras particu-

laridades observadas durante los experimentos. Además, se concluye presentando los

primeros resultados de detección de miedo basados en dicha información utilizando

las etiquetas discretas y dimensionales autodeclaradas para los 47 voluntarias. Las

métricas obtenidas se utilizan y se fusionan con los resultados de audio en la siguiente

sección.

Las señales utilizadas a lo largo de esta exploración de la respuesta fueron debida-
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mente filtradas y denotadas. Las señales BVP se sometieron a la misma estrategia

de filtrado descrita en la sección 4.1.2, y también a un filtro IIR de paso bajo hacia

delante y hacia atrás para tratar el residuo de la línea de base. Para las señales GSR

y SKT, se aplicó un filtro FIR básico con una frecuencia de corte de 2Hz. Después,

esta salida filtrada se muestreó a 10 Hz y también se procesó con filtros de media

móvil y mediana móvil. El primero utilizó una ventana de 1 segundo y ayudó a re-

ducir el alto ruido residual después del FIR inicial, mientras que el segundo empleó

una ventana de 0,5 segundos y se ocupó de los transitorios rápidos.

Todos los análisis y resultados fisiológicos presentados en esta sección se realizan

utilizando las señales adquiridas por el sistema de herramientas de investigación

BioSignalPlux®Ėsta decisión se considera para obtener resultados comparables para

los diferentes sistemas de análisis fisiológico y de aprendizaje automático propuestos

con respecto a la literatura. Este hecho es fundamental para poder replicar pos-

teriormente el mismo análisis para los otros sistemas de sensores empleados en los

experimentos y evaluar las diferencias. Aunque esta última tarea no está dentro del

alcance de este trabajo de investigación, la verificación y validación de la adquisi-

ción de señales fisiológicas con Bindi y el sistema de herramientas de investigación

BioSignalPlux® ya ha sido realizada y publicada en [159,234].

6.3.1 Patrones fisiológicos y recuperaciones
El trabajo presentado en los capítulos 4 y 6, que trata de todas las etapas del

procesamiento digital de la señal, como el filtrado y la extracción de características,

nos permitió proporcionar un análisis más profundo de la respuesta fisiológica dentro

de nuestro propio conjunto de datos (WEMAC). La exploración fisiológica es una

tarea difícil cuando se considera este tipo de experimentos. Este hecho se ve afec-

tado principalmente por la complejidad de las emociones y por las incertidumbres

o variaciones fisiológicas intrínsecas debidas a las diferencias intra e inter individ-

uales. Así, en aras de la simplicidad, en esta sección realizamos una exploración

fisiológica preliminar considerando algunas de las señales revisadas y un conjunto

reducido de características. En concreto, para el análisis del patrón fisiológico, uti-

lizamos la señal GSR extraída durante la visualización de los estímulos relacionados

con la emoción para determinar el grado de similitud considerando las señales entre

el mismo y otros voluntarias. En cuanto al análisis de la recuperación fisiológica,
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se utilizaron características específicas extraídas de las señales GSR y BVP para

proporcionar una comparación detallada entre las etapas de recuperación y de visu-

alización de los estímulos relacionados con la emoción. Estos análisis proporcionaron

información útil sobre las respuestas fisiológicas esperadas y reales de los voluntarias.

Además, también pueden ampliarse estudiando el conjunto completo de señales y

características fisiológicas.

6.3.1.1 Análisis de patrones

Para la exploración del patrón fisiológico, como ya se ha comentado, se analizó el

comportamiento de la señal GSR. La selección de esta señal fisiológica se basó en la

relación directa que tiene con las respuestas emocionales, tal y como se ha revisado

y estudiado previamente en los capítulos 2 y 4.

En este estudio, la exploración de patrones se realizó para todos los 47 voluntarias

utilizando una técnica común de análisis de patrones de series temporales llamada

Dynamic-Time-Warping (DTW) [194,277–279]. Esta técnica permite cuantificar la

similitud entre dos series temporales con características equivalentes aunque tengan

velocidades o trayectorias de espacio de fase diferentes. Por ejemplo, las señales GSR

entre los diferentes voluntarias muestran este comportamiento. La figura 6-8 muestra

las señales GSR de los voluntarias 4, 15 y 27, extraídas durante la visualización de

uno de los estímulos de miedo. Se pueden observar diferentes localizaciones de los

picos fásicos, algunos dentro del mismo intervalo temporal para los tres voluntarias

y otros en instantes totalmente diferentes. Obsérvese que el comportamiento y la

dinámica de la señal dependen principalmente del tipo de estímulos relacionados

con la emoción y del voluntario (factores intraindividuales como se detalla en el

capítulo 2). Cada una de estas señales, que se adquieren a intervalos regulares,

puede definirse como

𝑆𝑖,𝑗 = (𝑠𝑖,𝑗
1 , 𝑠𝑖,𝑗

2 , 𝑠𝑖,𝑗
3 , ..., 𝑠𝑖,𝑗

𝑁 ), (6.1)

donde 𝑖 y 𝑗 son el voluntario y el estímulo, respectivamente; y 𝑠𝑖,𝑗
𝑘 , con 𝑘 ⊆ [1, 𝑁 ],

son las diferentes muestras adquiridas para toda la duración del estímulo relacionado

con la emoción. Así, DTW encuentra la medida de distancia óptima entre señales,

siguiendo algunas reglas de restricción, destacando las similitudes entre las señales

y proporcionando una medida de su similitud independientemente de las variaciones

no lineales. En concreto, se utiliza una función de coste para evaluar la disimilitud
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entre todas las muestras de las dos series temporales que se comparan. En nuestro

caso, la función de coste viene dada por la distancia euclidiana siguiente

𝑑𝑚𝑛(𝑆𝑖,𝑗, 𝑆𝑞,𝑝) =

⎯⎸⎸⎷ 𝐾∑︁
𝑚,𝑛=1

(𝑠𝑖,𝑗
𝑚 − 𝑠𝑞,𝑝

𝑛 ) * (𝑠𝑖,𝑗
𝑚 − 𝑠𝑞,𝑝

𝑛 ), (6.2)

donde 𝑚 y 𝑛 son las muestras específicas de cada serie temporal. Obsérvese que

𝑗 y 𝑞 pueden ser el mismo o diferentes estímulos. Los resultados obtenidos con

esta operación se ordenan en una matriz de costes, que se utiliza para encontrar la

trayectoria óptima o warping. Una vez encontrado dicho camino, el resultado final

es el coste total o distancia, que está directamente relacionado con la similitud entre

ambas secuencias, dada por

𝑑𝑚𝑖𝑛(𝑆𝑖,𝑗, 𝑆𝑞,𝑝) =
∑︁

𝑚,𝑛∈𝐾

𝑑𝑚𝑛(𝑆𝑖,𝑗, 𝑆𝑞,𝑝). (6.3)
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Figure 6-8: Señales GSR extraídas de la visualización completa del sexto estímulo
de la primera tanda (último estímulo) de los voluntarias 4, 15 y 27.

Por lo tanto, en el caso de las señales GSR representadas para los tres voluntarias
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en este ejemplo, las distancias obtenidas son:

𝑑𝑚𝑖𝑛(𝑆4,6, 𝑆15,6) = 585.23

𝑑𝑚𝑖𝑛(𝑆4,6, 𝑆27,6) = 549.13

𝑑𝑚𝑖𝑛(𝑆27,6, 𝑆15,6) = 172.87,

(6.4)

que indica que los voluntarias 15 y 27 poseen mayores similitudes que las otras

dos combinaciones de voluntarias. Así, para este ejemplo, 2 de los 3 voluntarias

examinados presentan un patrón fisiológico, un comportamiento o una dinámica

similares con respecto a este estímulo específico.

Dentro de este contexto de análisis de patrones, se abordaron tres casos de uso

diferentes de agrupación de patrones basados en la separación o combinación de los

diferentes lotes. Para todos los casos de uso, los diferentes segmentos analizados

GSR se normalizaron (puntuación Z) y se compararon entre sí. Nótese que en este

caso, cada segmento se refiere a la señal GSR extraída para cada estímulo completo

relacionado con la emoción. Antes de estudiar el análisis del patrón individual de

segmento a segmento, generamos visualizaciones de matrices promediadas y gráficos

de DTW agregados, como se muestra en las Figuras 6-9 y 6-10, respectivamente.

El primero da una idea de la similitud de patrones promediada para todos los vol-

untarias y todo el experimento, es decir, la distancia total para cada voluntario

se calcula promediando el conjunto de distancias obtenidas para cada comparación

que consideró todo el experimento. Se puede observar cómo los puntos negros de

la matriz son los que presentan mayor similitud (por ejemplo, la diagonal). Esta

matriz puede servir como herramienta para evaluar una primera perspectiva gráfica

respecto a la agrupación de patrones. En este caso, la Figura 6-10 representa los

valores promediados de la matriz para los 32 voluntarias del primer lote y los 6 estí-

mulos de miedo. Aunque se pueden ver algunos puntos oscuros dentro de la matriz

(por ejemplo, los voluntarias 8-1, 15-2, 31-16, etc.), no podemos concluir que exista

una formación de agrupación de patrones. En caso de agregar todas las distancias

entre voluntarias dentro de la matriz y obtener la media y la desviación estándar

(omitimos la parte diagonal), se puede informar de la figura 6-10. De este modo se

obtiene una perspectiva macro del comportamiento de cada voluntario en compara-

ción con los demás. Así, podemos concluir que, en promedio, no hay voluntarias
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Figure 6-9: Matriz de distancia DTW promediada para los 32 voluntarias que vi-
sualizan los 6 estímulos de miedo del primer lote de estímulos relacionados con la
emoción.

extremadamente desviados. Sin embargo, tampoco podemos afirmar la existencia de

formaciones de patrones. Obsérvese que, en aras de la simplicidad, sólo se muestran

esta matriz y el gráfico, pero el resto de los casos de uso también se analizaron y

llevaron a la misma conclusión.

Después de realizar el análisis anterior y con el fin de cuantificar la agrupación

de segmentos, se realizaron estudios de agrupación de segmentos independientes y

dependientes del sujeto. En primer lugar, se extrajeron las similitudes (distancias)

de cada segmento GSR con respecto al resto de segmentos de los mismos y diferentes

voluntarias. En segundo lugar, considerando el conjunto de distancias reunidas, se

encontró el mínimo. Por último, se asignó al segmento actual que se estaba proce-

sando la misma etiqueta que la de dicho mínimo. Obsérvese que para este análisis

se consideraron las etiquetas binarizadas de verdad básica como las esperadas (no

autodeclaradas). Este hecho se basó en la evaluación de la viabilidad de encontrar

agrupaciones de patrones fisiológicos sin ninguna información de sesgo cognitivo es-

pecífica del sujeto. La tabla 6.2 informa de los resultados tras realizar los estudios de

clustering para los diferentes casos de uso. Se puede observar que los resultados más

altos para las tres métricas comparadas se obtienen siempre cuando se considera el

enfoque de clustering independiente del sujeto. Nótese que este hecho también puede

verse afectado por el tamaño del conjunto de datos, ya que la cantidad de datos para

la agrupación dependiente del sujeto es considerablemente menor que para la inde-

pendiente del sujeto. En general, hay más segmentos fisiológicos similares dentro de
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Figure 6-10: Resultados agregados obtenidos a partir de la matriz de distancia DTW
promediada para los 32 voluntarias de la Figura 6-9.

los estímulos sin miedo (especificidad). De hecho, la agrupación de los segmentos de

los estímulos de miedo no supera el umbral de detección del 50,00% (sensibilidad).

La mayor diferencia entre ambos lotes se registra para el agrupamiento independi-

ente del sujeto, con una sensibilidad de hasta el 47,92% y el 29,50% para el primer y

el segundo lote, respectivamente. Una vez más, este hecho puede indicar una clara

diferencia de respuesta fisiológica con respecto al efecto de los estímulos de miedo,

sin embargo, es necesario contextualizarlo a la menor cantidad de voluntarias que

se evalúan para el segundo lote. Por último, la mayor sensibilidad se consigue al

considerar ambos lotes conjuntamente, aunque a costa de obtener la menor especi-

ficidad para la agrupación independiente del sujeto. A pesar de este último hecho,

la Gmean para dicho caso de uso es una de las más altas con hasta un 53,45%. Por

lo tanto, tras este estudio podemos concluir diferentes aspectos clave relativos a las

respuestas fisiológicas debidas a los estímulos relacionados con el miedo y sin miedo,

así como a la agrupación fisiológica global:

• El análisis de las similitudes de las señales GSR entre los distintos voluntarias

no consigue distinguir adecuadamente entre los estímulos relacionados con el

miedo y los que no lo están. Obsérvese que este análisis puede ampliarse para

explorar otras señales, así como diferentes técnicas de exploración de patrones.

• La agrupación de estímulos no relacionados con el miedo está mejor caracteri-

zada o identificada. Este hecho se da independientemente del lote considerado.
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• La sensibilidad observada al considerar ambos lotes juntos es la más alta. Esto

implica que existen estímulos relacionados con el miedo que evocan respuestas

fisiológicas similares independientemente del lote y de su contenido audiovi-

sual específico. Por lo tanto, en esta investigación aplicamos una perspectiva

agnóstica de los lotes al considerar que ambos lotes pueden ser utilizados con-

juntamente para seguir diseñando un sistema de aprendizaje automático de

detección de miedo más eficiente.

• Las métricas de bajo rendimiento para los diferentes casos de uso del clustering

indican que esta información no es suficiente para desentrañar y distinguir los

mecanismos de activación fisiológica relacionados con el miedo. Por lo tanto,

se podrían explotar más señales y/o características para lograr dicho objetivo.

Clustering Lote Métricas de identificación de segmentos

Tipo Número SPE SEN Gmean

Sujeto-dependiente
1 54.29% 43.23% 48.45%

2 48.57% 48.57% 48.57%

Sujecto-independiente

1 61.33% 47.92% 54.16%

2 64.76% 29.50% 43.70%

1&2 57.34% 49.83% 53.45%
Table 6.2: Estudio de agrupación de un solo segmento para los sujetos dependientes
e independientes. SPE: especificidad, SEN: sensibilidad, Gmean: media geométrica.

6.3.1.2 Análisis de recuperación

Para el análisis de la recuperación fisiológica, tal y como se ha explicado anteri-

ormente en la sección 6.1, se realizó una evaluación de estabilización online de las

tres señales fisiológicas diferentes que se adquirían con la pulsera de Bindi durante

los experimentos. Este proceso online operaba cada diez segundos realizando un

filtrado básico online, extrayendo los BPMs de la señal BVP, y finalmente evalu-

ando la estabilización de los BPMs, GSR, y SKTs para más de cuatro ventanas

de procesamiento consecutivas. Este último proceso se realizó mediante el ajuste

del umbral duro siguiendo un intervalo de confianza del 90% respecto al nivel de

la primera ventana. Para analizar el efecto real de estas fases de recuperación, se

realizó un estudio fisiológico posterior. En concreto, se utilizaron las características
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extraídas de las señales GSR y BVP para proporcionar una comparación detallada

entre las etapas de recuperación y de visualización de los estímulos. Por un lado, se

compara el número de ERSCR o picos fásicos, la amplitud y el tiempo de subida.

Por otro lado, se elaboran diferentes Poincaré-plots para valorar el estado simpático

dentro de la etapa de recuperación [280]. Nótese que este análisis de recuperación

se realiza considerando ambos baños.

La figura 6-11 muestra los resultados promediados de los picos detectados durante

el experimento. Se hace una distinción dividiendo las respuestas fisiológicas rela-

cionadas con el miedo y las no relacionadas con el miedo, que también se aplica

para sus respectivas etapas de recuperación. Este proceso se realizó considerando

toda la señal fisiológica adquirida para los diferentes estímulos y etapas de recu-

peración, es decir, no se aplicó ninguna segmentación. Esta última consideración se

adopta porque el objetivo principal de este análisis es evaluar las respuestas fisiológ-

icas. Por lo tanto, no es necesario aplicar restricciones reales como la segmentación

de los datos. Nótese también que, para este análisis, se utilizó el algoritmo cvxEDA,

que se detalla en la sección 2.5.2. Como se esperaba, los picos detectados para todos

los estímulos de miedo superan a los detectados para las etapas de no-miedo y de

recuperación. En concreto, durante la visualización de los estímulos de miedo se

detectó una media de 2,30 picos por estímulo con una desviación estándar de 0,81,

mientras que los estímulos de no-miedo produjeron 1,11 picos con una desviación

estándar de 0,52. Uno de los aspectos clave de estos resultados es que las etapas

de recuperación están por debajo de dichas métricas para ambos tipos de estímu-

los. Esto se obtiene tanto para los valores promediados como para la desviación

estándar: la recuperación del miedo presenta una media de picos de 0,99 (0,37),

y la recuperación del no-miedo llega a 1,03 (0,48). Para apoyar los resultados de

la detección de picos, su amplitud y tiempo de recuperación también se extraen y

se representan en las figuras 6-12 y 6-13. Obsérvese que la amplitud indicada se

obtiene como la amplitud relativa desde el inicio del pico detectado, así como para

el tiempo de recuperación, véase la Figura 2-14. En general, se observa el mismo

comportamiento para estas métricas. Sin embargo, la media y la desviación estándar

de la amplitud relativa para la recuperación sin miedo superan las métricas de los

estímulos sin miedo. En concreto, los estímulos sin miedo alcanzan una amplitud

Jose A. Miranda, Tesis Doctoral 258



6.3. Exploración de la respuesta fisiológica

Fear No Fear
0

0.5

1

1.5

2

2.5

3

3.5

# 
pe

ak
s 

de
te

ct
ed

Stimuli
Recovery

Figure 6-11: Comparación de resultados promediados obtenidos del proceso de ex-
tracción de picos GSR mediante el algoritmo cvxEDA para los voluntarias de 47 y
ambos lotes.

relativa media de 0,01uS con una desviación estándar de 0,006uS, y la recuperación

sin miedo proporciona una amplitud relativa media de 0,02uS con una desviación

estándar de 0,01uS. Esta diferencia fisiológica debe contextualizarse junto con el

tiempo de recuperación de los picos extraídos, en el que observamos exactamente el

mismo comportamiento que para los picos detectados. Así, observando este compor-

tamiento, podemos concluir que, en promedio, el nivel de excitación es el esperado

para las etapas de recuperación en comparación con los estímulos de miedo y no

miedo juntos. Por lo tanto, la aplicación del proceso de recuperación activa imple-

mentado reduce el sesgo emocional entre los estímulos.

Para el análisis del BVP, utilizamos una herramienta comúnmente aplicada para

valorar la activación simpática, que se conoce como Poincaré-plot. Se trata de un

gráfico de recurrencia en el que los IBIs consecutivos se trasladan a un diagrama

de dispersión bidimensional para obtener una imagen gráfica del comportamiento

del HRV para un intervalo de tiempo determinado, Figura 6-14. A partir de este

gráfico concreto se obtienen diferentes métricas geométricas. En general, las dos

más importantes son la desviación estándar a lo largo y perpendicular a la línea de

identidad, 𝑆𝐷2 y 𝑆𝐷1 respectivamente. Se ha demostrado que estos rasgos pueden

caracterizar la activación simpática y parasimpática. Por ejemplo, el hecho de que

el cluster principal tenga una forma estrecha es una indicación del dominio de los
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Figure 6-12: Comparación de los resultados promediados obtenidos del proceso de
extracción de amplitudes relativas GSR mediante el algoritmo cvxEDA para los 47
voluntarias y ambos lotes.
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Figure 6-13: Comparación de los resultados promediados obtenidos del proceso de
extracción del tiempo de recuperación de picos GSR mediante el algoritmo cvxEDA
para los voluntarias 47 y ambos lotes.
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componentes no respiratorios que regulan la frecuencia cardíaca, lo que está directa-

mente relacionado con la activación simpática. Por el contrario, cuanto más amplio

sea el clúster, mayor será la dominancia de los componentes respiratorios, lo que

está relacionado con el predominio del parasimpático. Además, este tipo de gráfico

permite estudiar la no linealidad de la información cardiaca, así como ser insensible

a las tendencias de los IBI [281–283]. Obsérvese que la serie temporal del IBI se

explica y representa en la sección 4.1.3.1 y en la ecuación 4.6. El cálculo de ambas

características de desviación estándar se ha realizado siguiendo una simplificación

considerando [284–286]. Así, estos se calculan como la desviación estándar de la

serie temporal obtenida de la siguiente manera:

𝑆𝐷2(𝑖) = (
√

2
2 ) * (𝐼𝐵𝐼𝑖 + 𝐼𝐵𝐼𝑖+1),

𝑆𝐷1(𝑖) = (
√

2
2 ) * (𝐼𝐵𝐼𝑖 − 𝐼𝐵𝐼𝑖+1).

(6.5)

𝐼𝐵
𝐼 𝑛
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𝑆𝐷1
𝑆𝐷2

Figure 6-14: Ejemplificación de un gráfico de Poincaré recurrente y su métrica de
desviación estándar a lo largo (𝑆𝐷2) y perpendicular (𝑆𝐷1) a la línea de identidad.

Para nuestro experimento, al igual que se hizo con la señal GSR, se consideró

toda la señal BVP para los diferentes estímulos y etapas de recuperación, es decir,

no se aplicó ninguna segmentación. La figura 6-17 muestra diferentes perspectivas

para los tres Poincaré-plots obtenidos: estímulos con y sin miedo, y etapas de re-

cuperación. Obsérvese que todas las series temporales del IBI de los 47 voluntarias

están contenidas en estos Poincaré-plots. A primera vista, podemos observar que
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los puntos de miedo tienden a estar ligeramente más cerca de la esquina inferior

izquierda. Este hecho es una indicación de una menor variabilidad de la frecuencia

cardíaca o de un mayor ritmo cardíaco. Además, los puntos de recuperación son

los que presentan una mayor dispersión o una forma más amplia, lo que indica una

dominancia parasimpática.
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Figure 6-15: Diferentes perspectivas de Poincaré para todos los 47 voluntarias con-
siderando los estímulos de miedo (rojo-abajo), los estímulos sin miedo (verde-medio)
y las etapas de recuperación (azul-arriba). Vista frontal.
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Figure 6-16: Diferentes perspectivas de Poincaré para todos los 47 voluntarias con-
siderando los estímulos de miedo (rojo-abajo), los estímulos sin miedo (verde-medio)
y las etapas de recuperación (azul-arriba). Vista longitudinal.
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Figure 6-17: Diferentes perspectivas de Poincaré para todos los 47 voluntarias con-
siderando los estímulos de miedo (rojo-abajo), los estímulos sin miedo (verde-medio)
y las etapas de recuperación (azul-arriba). Vista 2D.

El análisis de este tipo de gráficos mediante la exploración visual es una tarea

difícil. Por lo tanto, la tabla 6.3 informa de la media y la desviación estándar de

los diferentes valores 𝑆𝐷2 y 𝑆𝐷1 obtenidos a partir de estos gráficos de Poincaré

presentados. Nótese que en este caso las etapas de recuperación se dividen como se

hizo para el análisis GSR.

Stimuli 𝑆𝐷2 (𝑚𝑠) 𝑆𝐷1 (𝑚𝑠)

Type 𝜇(𝜎) 𝜇(𝜎)

Miedo 62.78 (9.99) 14.28 (2.91)

Miedo en recuperación 72.37 (13.11) 17.19 (3.47)

No Miedo 60.96 (11.19) 14.42 (3.05)

No Miedo en recuperación 70.57 (11.84) 17.22 (3.34)

Table 6.3: Evaluación de las características del diagrama de Poincaré para los estí-
mulos con y sin miedo, y sus respectivas etapas de recuperación. Estas métricas son
la media y la desviación estándar promediadas para los 47 voluntarias.

Aunque la información del BVP no está directamente relacionada con una dimen-

sión emocional, como lo está el GSR con el arousal, y su análisis es más com-

plejo, los resultados obtenidos reafirman algunos de los efectos fisiológicos expuestos

en la anterior exploración del GSR. Por ejemplo, al comparar las características

obtenidas para los estímulos con y sin miedo, podemos observar cómo mientras el

valor medio de 𝑆𝐷2 disminuye de 62,78 ms a 60,96 ms, el 𝑆𝐷1 aumenta de 14,28 ms a

14,42 ms. Para las etapas de recuperación, 𝑆𝐷1 aumenta en ambos tipos de estímu-

los, recuperación con miedo y sin miedo, lo que indica una formación de agrupación
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más amplia y una activación parasimpática. Sin embargo, 𝑆𝐷2 también aumenta

para ambas recuperaciones. Este hecho fisiológico implica que la agrupación de las

fases de recuperación es más dispersa en ambas direcciones, lo que no es deseable.

Idealmente, 𝑆𝐷2 debería tener el comportamiento opuesto para las etapas de recu-

peración. Así, a partir de este análisis, concluimos que el proceso de recuperación

está teniendo un efecto en la parte parasimpática del ANS, pero no está dismin-

uyendo la contribución simpática.

El proceso de recuperación fisiológica implementado y sus efectos fisiológicos se han

verificado a lo largo de estos análisis. Una de las principales limitaciones de este

proceso de recuperación en línea es que no está produciendo una respuesta fisiológica

promedio cercana a cero, y en algunos casos no está suprimiendo la contribución

simpática. Este hecho se debe principalmente a dos factores principales:

• Lograr una respuesta fisiológica plana (no activa), con predominio del parasim-

pático, cuando se está bajo un experimento de elicitación de emociones en

realidad virtual es una tarea difícil. Teniendo en cuenta que este experimento,

para la mayoría de los voluntarias, fue la primera experiencia de realidad vir-

tual, las diferencias observadas entre la dinámica fisiológica en los estímulos

sin miedo y en las etapas de recuperación son ligeramente notables para el

análisis de la GSR.

• El intervalo de confianza implementado obvia la tendencia o dinámica fisi-

ológica real dentro de cada ventana de procesamiento. Además, el gráfico de

Poincaré es insensible a las tendencias de los IBI o de la frecuencia cardíaca.

Por ejemplo, podría ocurrir que, dado un conjunto de diferentes ventanas de

procesamiento temporal consecutivas y un intervalo de confianza codificado,

la tendencia de la señal que se está evaluando sea positiva, lo que en el caso

de la señal GSR significaría un incremento de la excitación.

Hasta donde yo sé, ninguna base de datos pública y abierta consideraba una moni-

torización de la recuperación basada en el biofeedback activo dentro de sus experi-

mentos, lo que hace que esta parte de nuestra base de datos, así como el análisis pre-

sentado en esta sección, sean una contribución novedosa. Las limitaciones indicadas

se utilizaron para seguir investigando en nuevas implementaciones de recuperación

vestibles en línea. De hecho, se está desarrollando e implementando una versión
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mejorada del proceso de recuperación presentado. Por ejemplo, una de las primeras

etapas del nuevo seguimiento de recuperación en línea se ha implementado en [276].

En concreto, en esta primera etapa se ha utilizado la extracción de características

en línea para la señal BVP y, mediante regresión lineal de mínimos cuadrados, se

han analizado las diferentes tendencias de las características para asegurar la reduc-

ción de la activación simpática. Aunque este nuevo proceso de recuperación aún

está en desarrollo, ya se ha probado con una pequeña muestra de voluntarias y ha

demostrado superar el proceso inicial de control de la recuperación.

6.3.2 Resultados fisiológicos uni-modales
Como se ha indicado en la sección anterior, los resultados presentados en esta sec-

ción se han obtenido con las señales adquiridas por el sistema de herramientas de

investigación BioSignalPlux®Ṗor lo tanto, estos resultados se basan en la imple-

mentación de un sistema de aprendizaje automático fuera de línea. Aunque dicho

sistema no ha sido integrado, estos resultados representan los primeros resultados

de detección de miedo de nuestro conjunto de datos. Hay que tener en cuenta que

el diseño y la implementación del sistema de detección de miedos basado en nuestro

conjunto de datos está motivado principalmente por las limitaciones encontradas en

los anteriores sistemas de detección de miedos propuestos en el capítulo 4. En este

caso, y con el objetivo de mejorar y profundizar en los modelos independientes del

sujeto, el sistema presentado se centra en dicho enfoque. En cuanto a las etiquetas,

se han utilizado tanto las discretas como las dimensionales siguiendo el mismo en-

foque de miedo-binario expuesto en el capítulo 2 y aplicado en el capítulo 4. Sin

embargo, debido a las incoherencias de etiquetado observadas para algunos de los

voluntarias en la sección 6.2, decidimos excluir de la evaluación a los voluntarias

número 5, 6, 15, 33 y 40 para el caso discreto y a los voluntarias número 3, 5, 6,

13, 20, 21, 22, 40 y 42 para el caso de uso dimensional, ya que sólo tenían alrededor

del 25% de la clase positiva. Esto se tiene en cuenta aquí ya que las etiquetas uti-

lizadas son las valoraciones autoinformadas, a diferencia de la sección anterior que

utilizaba las etiquetas validadas o de destino. Se podrían realizar más investiga-

ciones para analizar y cuantificar el efecto de los sujetos gravemente desequilibrados

dentro de los sistemas de aprendizaje automático independientes del sujeto. Esto

último no entra en el ámbito de esta tesis doctoral. Cabe destacar que durante el
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desarrollo del sistema de detección de miedo presentado, dos tesis de licenciatura

supervisadas [287,288] y una tesis de máster supervisada [289] proporcionaron apoyo

en la exploración del espacio de diseño.

La arquitectura de procesamiento de datos fisiológicos implementada se muestra en

la Figura 6-18. Las etapas iniciales se basan en los sistemas de prueba de concepto

anteriores presentados en el capítulo 4. En primer lugar, las etapas de filtrado

aplicadas siguen los mismos procesos que se detallan en la sección 6.3. Para la

segmentación y la superposición de datos, se utiliza la estrategia de superposición

de 20 segundos y 50%, como se hizo para el sistema MANHOB en la Sección 4.2.2.

El proceso de extracción de características incluye características adicionales en

comparación con los sistemas de detección de miedo presentados anteriormente. En

concreto, se extraen 57 características: 31 de BVP, 20 de GSR, y 6 de SKT. Estas

características se normalizan siguiendo una técnica de puntuación Z y posteriormente

se introducen en la etapa de selección de características. Obsérvese que, antes del

proceso de selección de características, la división tren-prueba se realiza de forma

personalizada, mediante el uso de una técnica híbrida CV, LASO, como se detalla

en la sección 3.1.7.3. Esta técnica tiene en cuenta tanto la variabilidad intra como

inter de los voluntarias, a diferencia de LOSO y LOTO. En concreto, la partición

LASO se realiza dejando fuera a la mitad de cada voluntario, es decir, las siete

primeras respuestas de los estímulos audiovisuales se utilizan para el entrenamiento

y las otras siete para la prueba. El conjunto de pruebas se emplea además para

ejecutar una prueba ciega completa, que se utilizará para evaluar el rendimiento

final del sistema. Hay que tener en cuenta que esta configuración de la partición de

entrenamiento-prueba es una aproximación inicial y puede mejorarse y/o realizarse

de forma diferente. Para el proceso de entrenamiento, se realiza una partición de

entrenamiento y validación con un 5-kFold. Esta partición también se utiliza durante

la optimización de hiperparámetros realizada a través de SMBO, como se detalla en

la sección 4.2.4. Esta arquitectura se aplica, valida y prueba en base a los mismos

tres clasificadores que para el sistema de detección de miedo presentado en la Sección

4.2.4: SVM, KNN, y ENS.
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Figure 6-18: Arquitectura de procesamiento de datos fisiológicos para entrenar y
probar los modelos de aprendizaje automático generados utilizando nuestro propio
conjunto de datos.

6.3.2.1 Extracción de características

Dentro del procedimiento de extracción de características, también se realizan los

diferentes procesos de delineación. En este caso, la señal BVP se somete a un apil-

amiento o a un cálculo aproximado mediante tres algoritmos diferentes. El primer al-

goritmo es el aplicado en la sección 4.1.3. El segundo algoritmo viene dado por [290]

y se basa en un método de umbral adaptativo para PPG la detección de picos. El

tercer algoritmo viene dado por [291] y se basa en una media móvil de diferencias

valle-pico junto con filtros de umbral local para identificar los picos sistólicos de la

señal PPG. Estos tres algoritmos pueden agruparse dentro de los métodos basados

en la pendiente máxima y mínima local, que son los algoritmos de delineación BVP

menos exigentes desde el punto de vista computacional. Obsérvese que obtuvieron

una precisión de detección de picos superior al 90,00% para su respectiva validación.

A diferencia de la utilización de un solo algoritmo de delineación como se hizo para

los anteriores sistemas de detección de miedo presentado, este triple enfoque se con-

sidera en este caso para hacer frente a lo más posible con cualquier PPG deformación

morfológica. Nótese que en nuestro conjunto de datos, los estímulos audiovisuales

están basados en la RV, lo que introduce más movimientos corporales (artefactos de

movimiento) que el resto de las bases de datos públicas abiertas basadas únicamente

en estímulos 2D. La delimitación de la señal GSR se ha realizado como en la sección

4.1.3. Así, asumimos una combinación lineal de ambos componentes GSR, SCL y

SCR, seguida de la ecuación 2.7.

En lo que respecta específicamente al número de nuevas características añadidas,
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las tablas 6.4 y 6.5 detallan cada una de las características consideradas en este caso.

Nótese que las características extraídas para la señal SKT no cambiaron y son las

mismas que se especifican en la Tabla 4.14. Para la señal BVP, se incluyeron seis

nuevas características. En el dominio del tiempo, se consideró el valor medio de la

señal y la raíz cuadrada de la IBI (HRV-RMSSD). El primero se utiliza para tener en

cuenta cualquier residuo de respiración que haya quedado lo suficientemente fuerte

después de haber filtrado la señal. La segunda es una métrica adicional derivada de

los IBI extraídos y proporciona otro indicador del control vagal cardíaco, es decir,

cuanto más alta es la métrica, mayor es la activación parasimpática. En el dominio

de la frecuencia, se reordenaron las distintas bandas de frecuencia y se obtuvo más

información sobre la contribución energética de las distintas bandas, relativa y nor-

malizada. Obsérvese que dicha reordenación de la definición de las bandas se ha

asumido debido a las recientes publicaciones [179]. Además, se implementó un cam-

bio importante para la estimación de la PSD teniendo en cuenta los IBIs adquiridos

de forma desigual. Así, en lugar de interpolar y utilizar el estimador de promedio de

segmentos superpuestos de Welch, se ha empleado el periodograma de Lomb-Scargle

para estimar las PSDs para las bandas espectrales especificadas [292]. Esta técnica

nos permite relajar las consideraciones de resolución de frecuencia. Una vez obtenida

la contribución de la PSD para cada banda, se calcula su densidad espectral de en-

ergía, que posteriormente se normaliza para obtener la relación de energía entre las

bandas LF y HF. Por último, las características no lineales se han ampliado con

hasta siete métricas derivadas de Poincaré-plot. Éstas se basaron principalmente

en [285, 286] y su cálculo utiliza 𝑆𝐷2 y 𝑆𝐷1, que se detallan en la Sección anterior

y vienen dadas por la ecuación 6.5. Así, la longitud longitudinal y transversal de la

parcela se calcula como

𝐿𝑆𝐷2 = 4 * 𝑆𝐷2,

𝑇𝑆𝐷1 = 4 * 𝑆𝐷1.
(6.6)

Obsérvese que estas dos características basadas en la recurrencia están directamente

relacionadas con las desviaciones estándar 𝑆𝐷2 y 𝑆𝐷1. Por lo tanto, siguen la misma

lógica fisiológica, pero de una manera mejorada debido al factor de multiplicación.

Además, también se calcularon el índice simpático cardíaco (CSI), el CSI modificado
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(MCSI) y el índice vago cardíaco (CVI). Se calculan de la siguiente manera

𝐶𝑆𝐼 = 𝐿𝑆𝐷2/𝑇𝑆𝐷1 = 𝑆𝐷2/𝑆𝐷1,

𝑀𝐶𝑆𝐼 = 𝐿2
𝑆𝐷2/𝑇𝑆𝐷1 ,

𝐶𝑉 𝐼 = 𝑙𝑜𝑔10(𝐿𝑆𝐷2 * 𝑇𝑆𝐷1).

(6.7)

Se puede observar que estas características están fuertemente relacionadas con la

activación simpática y parasimpática dada una trama de Poincaré. Por ejemplo,

el MCSI mejora la longitud longitudinal para enfatizar la respuesta simpática, lo

que puede llevar a distinguir las activaciones simpáticas más débiles. Uno de los

principales cambios dentro de las características no lineales del BVP es que el MSE

no se considera en este sistema. Este hecho se debe a las limitaciones observadas al

extraer esta característica para ventanas temporales cortas [293,294]. Para el GSR,

se incluyeron dos características más. Se trata del tiempo medio de recuperación rel-

ativa y del área media bajo los picos detectados. La primera ya se ha utilizado en la

sección anterior. El área bajo los picos se calcula mediante una aproximación trape-

zoidal. Obsérvese que esta última puede mejorarse utilizando la regla de Simpson a

costa de aumentar el tiempo de cálculo.

6.3.2.2 Selección de características

Para reducir la dimensionalidad del problema, se emplea SFS se emplea. Esta

técnica permite seleccionar las características más relevantes y, por tanto, reducir

la complejidad del tiempo de entrenamiento e inferencia y los requisitos de alma-

cenamiento. Así, ejecutamos el SFS para cada uno de los tres clasificadores con-

siderando cada conjunto de entrenamiento generado de voluntarias. En el caso del

SVM, se utiliza un kernel RBF con 𝛾 = 1 y 𝐶 = 1. El KNN se ajusta a la distancia

euclidiana con 10-𝐾 vecinos más cercanos. Por último, el ENS utiliza un algoritmo

AdaBoost con árboles de decisión potenciados como aprendices débiles y un número

máximo de divisiones de hasta 10. La función de coste para cada iteración del SFS

viene dada por 1 −𝑀𝐶𝐶. Obsérvese que este proceso de selección de caracterís-

ticas se realiza después de la división entrenamiento/prueba para evitar la fuga de

información del conjunto de prueba.

En los siguientes puntos, proporcionamos la lista de características que se selec-
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Table 6.4: Características extraídas para la señal BVP y la propuesta de re-
conocimiento de emociones binarias de miedo utilizando nuestro conjunto de datos.

Sensores Dominio Características

BVP Dominio Temporal: Filtered data mean value
(31) (4) Mean of IBI

HRV-SDNN
HRV-RMSSD

Dominio Frecuencial: Normalised IBI PSD contribution (summation) for:
(12) Low frequency (LF) (0.01–0.15 Hz)

High frequency (HF) (0.15–0.40 Hz)
Ultra-High frequency (UHF) (0.40–1.00 Hz)
Energy contribution of those IBI PSD bands

Relative energy of those IBI PSD bands
Normalised energy ratio between LF and HF

Normalised energy ratio for LF and HF
No Lineal: From Poincaré-plot: SD2, SD1, LSD2, TSD1, CSI, MCSI, CVI

(15) Detrended fluctuation for the filtered signal
Recurrence rate

Determinism
Laminarity

Longest RP diagonal line
Diagonal lines entropy

Trapping time
Correlation dimension

cionaron al menos una vez para todos los modelos generados. Cuando se utilizan las

etiquetas discretas binarizadas, se obtienen las siguientes mejores características:

• Para el sistema basado en SVM (15 características seleccionadas en total):

– BVP (9): valor medio de los datos filtrados, HRV-RMSSD, contribución

energética de HF y UHF, relación LF/HF, 𝑆𝐷1, 𝑇𝑆𝐷1, análisis de fluc-

tuación de detrimento para la señal filtrada, laminaridad y entropía de

las líneas diagonales.

– GSR (5): valor medio de los datos filtrados, y su desviación estándar,

área bajo el ERSCRs detectado, distribución del primer y tercer cuartil.

– SKT (1): valor medio filtrado.

• Para el sistema basado en KNN (11 características seleccionadas en total):

– BVP (2): valor medio de los datos filtrados, y laminaridad.

– GSR (8): valor medio de los datos filtrados, número medio de picos

ERSCR, amplitud relativa media, tiempo de subida y tiempo de recu-

peración de los picos ERSCR, área bajo los ERSCR, distribución del

primer y tercer cuartil.

– SKT (1): valor medio filtrado.
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Table 6.5: Características extraídas para la señal GSR y la propuesta de re-
conocimiento binario de emociones de miedo utilizando nuestro conjunto de datos.

Sensores Dominio Características

GSR Dominio temporal: Filtered data mean value
(20) (9) ERSCR including number of peaks

ERSCR amplitude and rise time
ERSCR recovery time and area under the peak

Filtered data Standard deviation
First quartile
Third quartile

Dominio frecuencial: Power spectral density of two bands
(3) for SCL and SCR components

(0–0.05 Hz, 0.05–1.5 Hz)
Spectral density ratio for 0–0.05 Hz

No lineal: Detrended fluctuation for filtered data
(8) Recurrence rate

Determinism
Laminarity

Longest RP diagonal line
Diagonal lines entropy

Trapping time
Correlation dimension

• Para el sistema basado en ENS (13 características seleccionadas en total):

– BVP (3): valor medio de los datos filtrados, entropía de las líneas diago-

nales y tiempo de captura.

– GSR (8): valor medio de los datos filtrados, número medio de picos

ERSCR, amplitud relativa media y tiempo de subida de los picos ERSCR,

área bajo los ERSCR, distribución del primer y tercer cuartil, y laminar-

idad.

– SKT (2): valor medio filtrado, y densidad espectral de potencia de la

banda más baja (0–0,1 Hz).

Cuando se utilizan las etiquetas dimensionales binarizadas, se obtienen las siguientes

mejores características:

• Para el sistema basado en SVM (11 características seleccionadas en total):

– BVP (4): valor medio de los datos filtrados, media del IBI, tasa de re-

currencia y entropía de las líneas diagonales.

– GSR (5): valor medio de los datos filtrados y su desviación estándar,

distribución del primer y tercer cuartil y tiempo de captura.

– SKT (2): valor medio filtrado y densidad espectral de potencia de la

banda más baja (0–0,1 Hz).
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• Para el sistema basado en KNN (8 características seleccionadas en total):

– BVP (2): valor medio de los datos filtrados, y laminaridad.

– GSR (5): valor medio de los datos filtrados, número medio y amplitud

relativa media de los picos ERSCR, distribución del primer y tercer cuar-

til.

– SKT (1): valor medio filtrado.

• Para el sistema basado en ENS (8 características seleccionadas en total):

– BVP (3): valor medio de los datos filtrados, entropía de las líneas diago-

nales y tiempo de captura.

– GSR (4): valor medio de los datos filtrados, número medio de picos

ERSCR, amplitud relativa media de los picos ERSCR y distribución del

primer cuartil.

– SKT (1): valor medio filtrado.

En general, la cantidad de características seleccionadas por cada modelo oscila en-

tre 15 y 20. Así, la complejidad del problema se reduce a una cantidad relativamente

baja de características para los diferentes clasificadores y para ambas metodologías

de etiquetado. Nótese que este hecho afecta drásticamente a las diferentes etapas de

la arquitectura fisiológica, como el entrenamiento y la prueba (inferencia). Además,

en lo que respecta al número y la naturaleza específicos de las características más

importantes enumeradas para cada caso de uso del etiquetado, aproximadamente

el 50% son temporales y morfológicas, el 20% se basan en la frecuencia y el 30%

son no lineales. Aunque cada clasificador no seleccionó exactamente las mismas car-

acterísticas, dicha selección determina una primera aproximación para obtener las

que proporcionan la información más valiosa. Para el caso del etiquetado discreto

binarizado, cabe destacar que los tres clasificadores coincidieron en considerar el

valor medio de los datos filtrados para los tres sensores, características relacionadas

con los picos de ERSCR, y algunas características no lineales directamente rela-

cionadas con la caracterización no periódica del sistema (laminaridad, tiempo de

atrapamiento, entropía de las líneas diagolares). Para el caso del etiquetado dimen-

sional binarizado, se repite el mismo comportamiento respecto a la consideración del

valor medio de los datos filtrados, que también se acompaña de rasgos relacionados

con los picos de ERSCR por parte de dos de los tres clasificadores y de los mismos
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rasgos no lineales. Sin embargo, el SFS aplicado para el caso de uso de la dimensión

binarizada considera menos características acordadas entre los modelos. Este hecho

puede ser una consecuencia del mayor desacuerdo observado en dicho etiquetado.

6.3.2.3 Resultados de la validación y las pruebas

Además, tras aplicar el paso de selección de características, decidimos emplear un

enfoque de aprendizaje sensible a los costes para tratar la situación de desequilibrio

en el etiquetado. Para ello, se ajustó un parámetro de coste de clasificación errónea,

tal y como se hizo con los sistemas de detección de miedo propuestos anteriormente

en la sección 4.1.4. Para este caso concreto, se aplicó un coste de clasificación errónea

de 1,6 sobre la clase positiva (miedo), que se fijó mediante un barrido experimental

de parámetros tras la etapa de selección de características. Tenga en cuenta que

esta consideración de diseño hace que el sistema sea menos propenso a omitir una

situación peligrosa para el caso de uso que se aborda [183], es decir, aumenta la

sensibilidad.

La salida del sistema de aprendizaje automático fisiológico es una etiqueta binaria

cada 10 segundo, como se indica en la sección 4.2.2. Por lo tanto, para esta primera

aproximación, asumimos que la verdad básica de un estímulo específico es la etiqueta

binarizada autodeclarada que se le asigna, independientemente de la cantidad total

de instancias generadas, es decir, todas las instancias generadas dentro del mismo

estímulo tienen la misma etiqueta. Por ejemplo, hay estímulos audiovisuales dentro

de la misma clase que generan más instancias que otros. Esta aproximación puede

ser crítica para estímulos de corta duración, como el estímulo número ocho de la

primera tanda, cuya duración es de 23 segundo. Dicha duración implica una instan-

cia generada, que puede dañar seriamente el equilibrio del sistema o incluso ser insu-

ficiente para caracterizar adecuadamente la emoción objetivo de ese estímulo. Esta

limitación se aborda considerando el número completo de instancias para las clases

de miedo y no miedo sin depender de la cantidad de información proporcionada

por cada estímulo. La tabla 6.6 informa del número total de instancias basadas

en las etiquetas discretas binarizadas y las autodeclaradas dimensionalmente, con-

siderando una ventana de procesamiento de 20 segundos y un solapamiento del 50%.

Nótese que estos valores se obtienen para todos los voluntarias independientemente

de las etiquetas desequilibradas. Se puede observar que el equilibrio es cercano al
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Class Discrete Labels Dimensional Labels
Fear 1496 1335

Non-Fear 2107 1942
Balance 42/58% 40/60%(Fear/Non-Fear)

Table 6.6: Número total de instancias para nuestro conjunto de datos basado en
etiquetas discretas binarizadas y dimensionales autodeclaradas.

Table 6.7: Resultados de validación y prueba de los diferentes sistemas de apren-
dizaje automático fisiológico utilizando la primera versión de WEMAC. Se muestran
los resultados de ambos enfoques binarizados discretos (Disc) y dimensionales (Dim).

Classifier Partition SEN SPE Gmean ACC AUC F1
Type (MAD) (MAD) (MAD) (MAD) (MAD) (MAD)

SVM

Val-Disc 83.02(1.19) 78.79(0.99) 80.87(0.79) 80.72(0.79) 86.72(0.79) 78.16(0.16)
Test-Disc 64.36(17.39) 67.88(13.77) 65.29(12.48) 65.70(11.44) 65.33(16.08) 62.84(13.79)
Val-Dim 86.45(1.05) 75.36(2.91) 80.63(1.54) 82.26(1.07) 87.33(1.00) 82.23(0.99)
Test-Dim 72.78(13.21) 53.86(11.24) 61.60(9.23) 62.51(9.03) 62.14(11.24) 65.01(9.64)

KNN

Val-Disc 81.15(4.52) 75.55(4.92) 78.28(4.71) 73.18(5.85) 86.84(4.26) 75.32(5.04)
Test-Disc 65.53(14.63) 69.00(13.49) 66.08(10.67) 66.87(9.64) 66.45(14.30) 64.72(10.17)
Val-Dim 84.27(4.49) 84.65(3.92) 84.46(4.17) 84.45(4.20) 92.34(3.44) 84.60(4.19)
Test-Dim 61.08(14.32) 65.01(14.45) 61.37(7.68) 61.78(6.84) 61.43(10.46) 60.00(9.76)

ENS

Val-Disc 81.82(4.31) 75.40(5.29) 78.53(4.82) 68.17(3.70) 75.52(4.01) 64.19(3.74)
Test-Disc 68.55(12.10) 61.61(16.81) 63.51(10.48) 64.50(9.54) 64.57(14.25) 65.11(8.31)
Val-Dim 94.02(0.48) 93.18(0.53) 93.60(0.44) 93.71(0.44) 98.40(0.22) 93.72(0.44)
Test-Dim 65.91(15.71) 64.98(14.69) 63.75(9.28) 64.23(8.15) 66.62(12.20) 63.37(10.63)

reportado en la Sección 6.2.

Los resultados de validación y prueba de los diferentes clasificadores se detallan en

la Tabla 6.7. Obsérvese que se muestran los valores de desviación media y abso-

luta para los diferentes clasificadores, particiones y enfoques de etiquetado. Estos

resultados proceden de los 42 y 38 modelos considerados para el modelo discreto y

dimensional binarizado, respectivamente. En general, los resultados obtenidos están

en línea con los obtenidos en la sección 4.2.4.2, en la que el SVM mostró el peor

rendimiento, seguido del KN! (KN!), y siendo el ENS el mejor. De hecho, cuando

se analizan conjuntamente las métricas promediadas proporcionadas y sus valores

de dispersión tanto para el etiquetado discreto como dimensional, el clasificador Ad-

aBoost (ENS) es el que supera a los otros dos. Una de las principales diferencias

entre ellos es que, mientras que el SVM y el KNN pierden especificidad para el caso

de uso dimensional, el ENS mantiene el equilibrio entre sensibilidad y especificidad

dando lugar a una Gmean muy similar para ambos casos.

Por un lado, específicamente para el etiquetado discreto, los mejores resultados

promediados los obtiene el clasificador KNN tanto para las particiones de validación
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como de prueba. Además, la mayor especificidad, Gmean, precisión y AUC se con-

siguen en este caso para este clasificador con hasta un 69,00%, 66,08%, 66,87%

y 66,45%, respectivamente. Por otro lado, cuando se trata del etiquetado dimen-

sional, los clasificadores no siguen exactamente el mismo comportamiento que para

el discreto. De hecho, el mejor clasificador en este caso es el ENS alcanzando la

mayor especificidad, Gmean, precisión y AUC con hasta 64,98%, 63,75%, 64,23% y

66,62%, respectivamente. Obsérvese que estos resultados se obtienen utilizando un

conjunto reducido de características, como se detalla en la sección anterior. Este

hecho, acompañado de los retos que supone tratar con un enfoque independiente

del sujeto, confiere un gran valor y un gran potencial a estos primeros resultados

iniciales del WEMAC.

Para contextualizar el comportamiento de los clasificadores para los diferentes mod-

elos considerados, las figuras 6-19 y 6-20 muestran la métrica de rendimiento de MCC

sobre sus particiones de prueba. Obsérvese que esta métrica utiliza toda la infor-

mación de la matriz de confusión y proporciona un valor similar al de la correlación

considerando las matrices de confusión reales y predichas. Para ambos casos de uso

del etiquetado, observamos que los diferentes modelos siguen un comportamiento

similar para algunos de los voluntarias considerados. Por ejemplo, la correlación de

las métricas MCC es de hasta 0,48(0,17) y 0,44(0,13) para el etiquetado discreto

y dimensional, respectivamente. Este hecho es destacable ya que es un indicador

que demuestra la independencia del comportamiento específico de cada clasificador

con respecto al conjunto de datos utilizado. En consonancia con los resultados re-

portados en la Tabla 6.7, el enfoque de etiquetado discreto supera al dimensional.

Sin embargo, estos gráficos también muestran unos resultados muy dependientes del

sujeto en algunos casos. Esto se refleja en una variabilidad muy alta, que también se

refleja en la MAD de las diferentes métricas de rendimiento. En concreto, en estos

gráficos, las métricas de MCC se sitúan aproximadamente entre -0,4 y 0,9 y entre

-0,4 y 0,6 para los casos discretos y dimensionales, respectivamente. Dicha vari-

abilidad y distribución se representa en la Figura 6-21, que muestra la distribución

agregada para los diferentes clasificadores y casos de uso de etiquetado. Obsérvese

que el valor mediano es la línea roja u horizontal dentro de los recuadros. Como ya

se ha dicho anteriormente, el entrenamiento utilizando el etiquetado discreto bina-
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Figure 6-19: Evaluación de la métrica de prueba MCC para todos los 42 modelos
considerados dentro del caso de uso de detección de miedo discreto binarizado.
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Figure 6-20: Evaluación de la métrica de prueba MCC para todos los 38 modelos
considerados dentro del caso de uso de detección de miedo dimensional binarizado.

rizado consigue mejores modelos (medianas más altas) que el etiquetado dimensional

binarizado. Además, la dispersión del rango intercuartil es siempre menor cuando

se aplica el clasificador ENS.

Hasta donde yo sé, los sistemas generados son los primeros sistemas de detección

del miedo que utilizan un conjunto reducido de señales fisiológicas y estímulos de

realidad virtual. Por ejemplo, estos resultados constituyen la línea de base fisiológica

para el conjunto de datos WEMAC. Se ha demostrado que, en general, los sistemas

entrenados con el etiquetado discreto binarizado obtienen mejores modelos que los

entrenados con el etiquetado dimensional binarizado. Este hecho está en consonancia

con las conclusiones de la exploración de la respuesta del etiquetado propio expuestas

en la sección 6.2.

La principal limitación de los modelos de aprendizaje automático generados es la

Jose A. Miranda, Tesis Doctoral 276



6.3. Exploración de la respuesta fisiológica

SVM_Disc SVM_Dim KNN_Disc KNN_Dim ENS_Disc ENS_Dim
Classifiers & labelling use case

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

M
C

C

Figure 6-21: Distribución del diagrama de caja de la métrica de prueba MCC para
todos los modelos de 42 y 38 considerados dentro de los casos de uso de detección
de miedo discreto y dimensional binarizado.

alta variabilidad y dispersión observada. Este hecho podría deberse a un problema

de sobreajuste, que podría estar provocando la generación de modelos de bajo sesgo

y alta varianza. Sin embargo, las métricas de validación obtenidas no lo sugieren.

De hecho, el clasificador que proporciona las mejores métricas de rendimiento de

validación, es decir, AdaBoost con más del 90,00%, es el menos susceptible a este

tipo de problemas, ver Sección 3.1.7. Por lo tanto, es necesario estudiar y analizar

diferentes aspectos para dar una explicación adecuada a este problema:

• La técnica acLASO aplicada deja una pequeña cantidad de muestras en la

partición de prueba. Aunque esta técnica está pensada para tratar la person-

alización de los sujetos, el pequeño tamaño del conjunto de datos de prueba

puede dar lugar a un conjunto de datos poco representativo. Por lo tanto, se

podrían aprovechar otras técnicas de partición para considerar un conjunto de

datos de prueba más grande y/o incluir más inter e intravariabilidad. Este

hecho también se ve afectado por la cantidad limitada de datos disponibles

para cada voluntario cuando se trata de bases de datos de laboratorio.

• En vista de esta variabilidad entre los distintos voluntarias, algunos procesos de

la arquitectura de entrenamiento propuesta pueden personalizarse en función

del conjunto de datos específico, es decir, en función de la combinación concreta

de voluntarias o de la distribución de clases. Por ejemplo, el enfoque sensible

a los costes puede ajustarse para cada conjunto de entrenamiento diferente.

• Las técnicas de partición para la generación de los conjuntos de datos de
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entrenamiento-validación podrían cambiarse por la misma técnica CV que se

aplica para la primera partición (LASO).

• Se puede realizar un análisis fisiológico adicional para encontrar clusters y

diferencias extremas entre los distintos voluntarias. Como primera aproxi-

mación, dichos clusters pueden basarse en filtros fisiológicos sencillos como:

nivel de activación GSR (hipoactividad vs hiperactividad), rangos SKT, y

nivel de ruido residual de la señal PPG tras el filtrado.

• También se pueden emplear diferentes tipos de técnicas de normalización y

escalado para evaluar su efecto. Este hecho está directamente relacionado con

la necesidad de descubrir la mejor forma de modelar el problema, es decir, la

detección del miedo independiente del sujeto.

Entre estas consideraciones expuestas, desde mi punto de vista, la que más está

afectando en la actualidad es el riesgo de falta de representatividad del conjunto de

datos de prueba. En concreto, en este caso, el LASO aplicado dejó aproximadamente

hasta un 1,3% de los datos totales para el conjunto de prueba. Esto supone una

media de 48 muestras sobre un total de 3600 instancias disponibles. Con el fin

de proporcionar un punto de partida en relación con esta discusión específica, la

Tabla 6.8 informa de los resultados para la misma arquitectura fisiológica cuando

se entrena el sistema KNN con el etiquetado discreto binarizado, pero utilizando

una partición LOSO para la división de entrenamiento-prueba. Podemos observar

que en el caso LOSO se obtienen resultados medios menores, que pueden verse

afectados por la intravariabilidad del voluntario no visto que no se tiene en cuenta

para el entrenamiento. Sin embargo, el hecho más importante se observa en la

diferencia de dispersión. El sistema LOSO informa de una menor variabilidad, lo

que puede ser una indicación de un conjunto de pruebas más representativo. Hay

que tener en cuenta que es necesario realizar más estudios y análisis para caracterizar

adecuadamente este hecho.

Table 6.8: Resultados de validación y prueba para los sistemas de aprendizaje au-
tomático KNN utilizando el etiquetado discreto binarizado y una técnica LOSO CV
para la partición entrenamiento-prueba.

Partition SEN SPE Gmean ACC AUC F1
Type (MAD) (MAD) (MAD) (MAD) (MAD) (MAD)

Test-Disc-LASO 65.53(14.63) 69.00(13.49) 66.08(10.67) 66.87(9.64) 66.45(14.30) 64.72(10.17)
Test-Disc-LOSO 64.05(10.69) 60.93(9.26) 61.74(6.98) 61.90(6.93) 62.25(9.54) 58.48(7.18)
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Dentro de esta casuística de variabilidad y además de los análisis recomendados

para la mejora de los modelos, hay que considerar también que la latencia emo-

cional y la dinámica fisiológica de cada voluntario para cada estímulo está afectando

a la separación de clases binarias. Por ejemplo, la figura 6-22 muestra la relación

LF/HF extraída de la señal IBI del voluntario número tres. En concreto, cada

barra representa la característica extraída para una ventana de 20 segundos con un

solapamiento de 18 segundos. Obsérvese que este solapamiento se aplica en este

caso para reducir la resolución temporal y mejorar la visualización dinámica del

rasgo a lo largo de cada estímulo. Podemos observar cómo varía la evolución de

esta característica específica dentro de cada estímulo. A partir de esta información,

podemos realizar un análisis como el proporcionado en la sección 6.3.1.1, en la que

se estudiaron los patrones GSR. Sin embargo, el problema a destacar en este caso

es que, independientemente de la evolución dinámica de las características dentro

de los estímulos, se está asignando la misma etiqueta a todas las instancias gener-

adas. Por lo tanto, habría que explotar diferentes técnicas de aprendizaje automático

para considerar la evolución temporal de las características o la contextualización

junto con un enfoque de etiquetado diferente. Esto último se refiere a la posibili-

dad de aplicar el aprendizaje automático semisupervisado para tratar las etiquetas

duras actuales como etiquetas blandas. Esto puede incluso pensarse como modelos

en los que las etiquetas son parámetros aprendibles. Además, la combinación de

las dos metodologías de etiquetado actuales, la discreta y la dimensional, debería

aprovecharse para sacar partido de cada una de ellas.

6.4 Marco de fusión de datos multimodales
Después de haber presentado y explicado el diseño del sistema de aprendizaje au-

tomático unimodal fisiológico, el otro enfoque principal a lo largo de este capítulo

es la capacidad de fusión de datos multimodales que puede ofrecer la arquitectura

del sistema Bindi2. De hecho, los sistemas de reconocimiento de emociones basados

en información multimodal están superando a los unimodales en la comunidad de

la computación afectiva [155, 174]. La mayoría de los sistemas multimodales pre-

sentados en la literatura solían basarse en datos de audio y visuales [295], habla y
2la investigación presentada en esta sección se basa en un trabajo multidisciplinar con los

miembros de la UC3M4Seguridad expertos en Teoría de la Señal y Comunicaciones
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Figure 6-22: Relación LF/HF extraída del voluntario 3 del conjunto de datos
WEMAC. Obsérvese que en las abscisas están representadas las emociones dirigidas
para el primer lote.

gestos faciales [296], EEG y expresiones faciales [297]. Existen conjuntos de datos

que recopilan información multimodal, que consideran la información fisiológica y

del habla [298,299]. Se presta poca atención a la exploración del diseño multimodal

utilizando información fisiológica y del habla. Sólo se ha encontrado un trabajo en

la literatura que utiliza estos dos tipos de información para observaciones a corto

plazo [300]. Emplearon una fusión híbrida por medio de la fusión de datos a nivel

de características y de decisión, que arrojó hasta un 55,00% de precisión para un en-

foque independiente del sujeto y una clasificación binaria de arousal-valencia. Por lo

tanto, el marco y las metodologías multimodales propuestos sirven como un enfoque

inicial para trabajar con el miedo real provocado en las mujeres y su procesamiento

adecuado teniendo en cuenta tanto la información fisiológica como la del habla.

Antes de entrar en detalles sobre los diferentes sistemas diseñados y los resultados

obtenidos a partir de la información recogida durante el desarrollo del conjunto de

datos WEMAC, se podría explicar y detallar adecuadamente una contextualización

sobre la casuística y las capacidades multimodales dentro de Bindi. Sobre esta

base, se propusieron diferentes disposiciones de los componentes del sistema para

explorar las posibilidades de dicho espacio de diseño multimodal. Esto proporcionó
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el esbozo de una exploración del espacio de diseño para diferentes arquitecturas del

sistema (fusión de datos de información fisiológica y de habla/audio procedentes del

brazalete y del colgante, respectivamente). La figura 6-23 muestra dicho esquema y

representa la relación potencial que se puede encontrar para los diferentes casos de

uso presentados. Los casos de uso propuestos se detallan a continuación:

• Caso 1: Uni-modal. Esta disposición es la línea de base de la capacidad de

detección del miedo para cada uno de los sistemas uni-modales, el fisiológico

y los modelos de voz.

• Caso 2: Multimodal con prealarma. En este caso, la información fisiológica

se evalúa continuamente a partir del sistema fisiológico unimodal. Cuando

detecta que el usuario está experimentando miedo, activa una prealarma a la

Bindi APP. Hay que tener en cuenta que esto se hace siguiendo un enfoque

de computación en el borde, ya que es la propia pulsera la que ejecuta un

motor ligero de aprendizaje automático. La detección del miedo hace que el

Bindi APPcomience a grabar audio durante un breve periodo de tiempo, lo que

da lugar a una estrategia de bajo consumo de energía para el micrófono. La

señal de audio se envía entonces a la capa for del sistema, es decir, a la Bindi

APP, para que realice la detección del miedo utilizando también un motor de

inteligencia unimodal basado en el habla.

• Caso 3: Multimodal con muestreo periódico de audio. Este caso sólo se difer-

encia del anterior en que no hay prealarma, sino que el habla/audio se muestrea

de forma periódica.

• Caso 4: Multimodal con prealarma y muestreo periódico de audio. Esta con-

figuración se basa en la conjunción de los dos casos de uso anteriores. Por

lo tanto, representa una etapa intermedia entre tener información multimodal

continua y los casos anteriores.

• Caso 5: Multimodal continuo. Esta es la última disposición propuesta del sis-

tema y es la que requiere la mayor cantidad de recursos ya que los dos sistemas

unimodales, fisiológico y habla/audio, están siempre activos, realizándose la

fusión de datos de forma continua.
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Figure 6-23: Esbozo de exploración del espacio de diseño para los diferentes arreglos
de la modalidad a realizar con la arquitectura de Bindi.

Cabe señalar que estos casos de uso detallados definen la arquitectura del sistema en

términos de disponibilidad de la información, en lugar de especificar la metodología

de fusión de datos aplicada. Esta última se refiere a las técnicas utilizadas para

realizar la fusión de datos fisiológicos y de audio. En realidad, pueden realizarse de

diferentes maneras dentro del mismo caso de uso. Hay que tener en cuenta que las

diferentes técnicas típicas de fusión de datos se describen y explican en el capítulo

3. De hecho, este trabajo de investigación, además de explorar el sistema fisiológico

de detección de miedo unimodal, se centra en el análisis y la comparación de tres

técnicas de fusión de datos propuestas mediante el uso de diferentes disposiciones de

arquitectura del sistema, principalmente relacionadas con los casos 2 y 5. El resto

de los casos de uso no están dentro del alcance de esta investigación. Por lo tanto, el

análisis de otras disposiciones, así como el resto de los casos de uso, se dejan para los

conjuntos de datos posteriores que se publicarán en la base de datos UC3M4Safety.

Dentro de este marco multimodal, he realizado la integración del sistema fisiológico

detallado en el apartado anterior. En concreto, se ha empleado el clasificador KNN.

El sistema unimodal de voz ha sido diseñado e implementado por los componentes

del equipo de la UC3M4Safety con experiencia en el procesamiento de señales de

audio. Este sistema incluye los siguientes módulos fundamentales Detección de

Actividad Vocal (VAD), Sustracción Espectral (SS), extracción de características

y un clasificador basado en redes neuronales [11]. Obsérvese que el caso de uso
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del etiquetado discreto binarizado y el LASO CV se aplicaron para ambos sistemas

uni-modales, y el sistema del habla también excluyó a los voluntarias altamente

desequilibrados especificados en la sección anterior. Por último, los subsistemas

unimodales fisiológico y del habla proporcionan una etiqueta binaria cada 10 y 1

segundos, respectivamente.

En cuanto a la exploración del espacio de diseño multimodal, el caso 2 fue el primero

que se implementó; se explica en el capítulo 5 y se implementó en la primera ver-

sión de Bindi o [219], que se basa en una estrategia de fusión de datos jerárquica.

En esta versión, la información fisiológica es recogida continuamente por el braza-

lete, que ejecuta un motor de inteligencia de detección de miedo fisiológico ligero

y unimodal. Cuando detecta que el usuario está experimentando dicha emoción,

lanza una prealarma a la Bindi APP. Esta acción hace que el Bindi APPcomience

a grabar audio durante un breve periodo, lo que supone una estrategia de bajo con-

sumo de energía para el micrófono. A continuación, la señal de audio se envía a la

Bindi APPpara que realice la detección del miedo mediante un motor de inteligencia

unimodal basado en el habla. Por último, si este último sistema confirma la detec-

ción, el Bindi APP inicia un procedimiento de seguridad para ayudar al usuario,

activando una alarma a los respectivos respondedores. La segunda disposición del

sistema analizado, Bindi 2.0a , también está relacionada con el caso 2 y se basa en

las mismas dos tuberías de procesamiento de datos uni-modales de Bindi 1.0 pero

aplicando, en la etapa de decisión final, una técnica de fusión tardía en lugar de

una estrategia de acuerdo jerárquico o de confirmación [220], Figura 6-24. Hereda

la funcionalidad de prealarma y casuística de Bindi 1.0 para tener un bajo consumo

de energía para el micrófono. Finalmente, la última disposición del sistema, Bindi

2.0b, está relacionada con el caso 5. Este sistema es una variación de Bindi 2.0a pero

basado en una adquisición continua de datos físicos y fisiológicos. No hay prealarma

involucrada y este arreglo sigue el esquema de fusión tardía introducido en Bindi

2.0a.
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Figure 6-24: Diagrama de bloques de fusión de datos para Bindi 2.0a y Bindi 2.0b.

En las siguientes subsecciones se detallan las diferentes estrategias de fusión de

datos consideradas y evaluadas con las tres disposiciones del sistema. Los resultados

experimentales dan cuenta del proceso de validación realizado fuera de línea para

evaluar la funcionalidad de los conductos de procesamiento de datos. Esto se hace

para posteriormente integrar dichos módulos en la arquitectura, equilibrando las

compensaciones observadas.

6.4.1 Métodos de fusión de datos multimodales
Antes de entrar en detalles sobre el marco multimodal propuesto, hay que tener

en cuenta algunos puntos para la evaluación de las diferentes disposiciones del sis-

tema multimodal. En primer lugar, de acuerdo con el diseño del conjunto de datos

WEMAC, hay que señalar que los datos fisiológicos se recogen durante la elicitación

del estímulo, mientras que la grabación del habla se registra durante la posterior

anotación de audio. Esto significa que los datos fisiológicos y del habla no están

alineados en el tiempo. Sin embargo, se requiere que ambos datos estén alinea-

dos para Bindi 2.0b, a diferencia de Bindi 1.0 y Bindi 2.0a. Dado que durante el

etiquetado se pide a los voluntarias que revivan las emociones sentidas durante la

elicitación del estímulo, se supone que la correspondencia es suficientemente sólida

entre ambos instantes. Sin embargo, esta suposición deberá ser validada cuando se

disponga del resto de subconjuntos del Base de datos UC3M4Safety.

Como ya se ha detallado en el apartado anterior, los subsistemas unimodales fisi-

ológico y del habla estiman una etiqueta binaria, 𝑦𝑚
𝑘 ∈ {0, 1}, para cada ventana

temporal 𝑘, donde 𝑚 ∈ 𝑡𝑒𝑥𝑡𝑜𝑝ℎ𝑦, sp son las dos modalidades, refiriéndose phy y sp
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a los subsistemas fisiológico y del habla, respectivamente. Sin embargo, cada una

de las modalidades utiliza una longitud de ventana temporal diferente, 𝑇𝑚, en se-

gundos. Además, el sistema está pensado para emitir una respuesta por período de

tiempo 𝑛 (cada uno de los períodos de tiempo tiene una longitud 𝐿), en segundos.

Así, se calcula una estimación de la probabilidad de miedo 𝑝𝑚
𝑛 para el periodo de

tiempo 𝑛 y la modalidad 𝑚, dada por

𝑝𝑚
𝑛 =

𝐾𝑚∑︀
𝑘=1

𝑦𝑚
𝐾𝑚·𝑛+𝑘

𝐾𝑚

, (6.8)

donde 𝐾𝑚 = ⌊ 𝐿
𝑇𝑚
⌋, es decir, el número de ventanas de tiempo que consideramos

para cada modalidad para la estimación de probabilidades.

A partir de ahí, se puede calcular una única etiqueta binaria, 𝑌 𝑚
𝑛 , correspondiente

a la probabilidad 𝑝𝑚
𝑛 como

𝑌 𝑚
𝑛 =

⎧⎪⎪⎨⎪⎪⎩
0 for 𝑝𝑚

𝑛 < th𝑚

1 otherwise
, (6.9)

es decir, dará como resultado "1" (miedo) si 𝑝𝑚
𝑛 es mayor que el umbral predefinido

relacionado con la modalidad, th𝑚 ∈ {0, 1}, o "0" (no-miedo) en caso contrario.

Obsérvese que los valores thphy y thsp se tratan en la sección 6.4.2.

Como métrica para representar el grado de confianza de cada sistema unimodal

en la etiqueta de clase predicha en un periodo determinado, la entropía ℎ𝑚
𝑛 para el

periodo de tiempo 𝑛-th y la modalidad 𝑚-th se calcula como

ℎ𝑚
𝑛 = −[𝑝𝑚

𝑛 · log(𝑝𝑚
𝑛 ) + (1− 𝑝𝑚

𝑛 ) · log(1− 𝑝𝑚
𝑛 )]. (6.10)

Sobre esta base, se estudian tres estrategias de fusión tardía para producir la re-

spuesta del sistema fusionado 𝑌 𝑡
𝑛𝑒𝑥𝑡𝑓 para el período de tiempo 𝑛-th:

• Caso 1, Entropía más baja: La respuesta del sistema corresponde a la etiqueta

binaria producida por el sistema unimodal con la menor entropía, es decir, la

más segura. Para ello, la probabilidad de miedo fusionada 𝑝𝑓
𝑛 para el período
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de tiempo 𝑛-th se calcula como

𝑝f
𝑛 =

⎧⎪⎪⎨⎪⎪⎩
𝑝phy

𝑛 if ℎphy
𝑛 < ℎsp

𝑛

𝑝sp
𝑛 otherwise

. (6.11)

A continuación, aplicando el mismo razonamiento que en la ecuación (6.9), se

obtiene una etiqueta binaria fusionada como

𝑌 f
𝑛 =

⎧⎪⎪⎨⎪⎪⎩
0 for 𝑝f

𝑛 < thf

1 otherwise
, (6.12)

donde, por ahora, thf es el convencional 0, 5.

• Caso 2, Combinación ponderada de la entropía inversa: La probabilidad de

miedo fusionada 𝑝𝑓
𝑛 para el periodo de tiempo 𝑛-ésimo se calcula como una

suma ponderada de probabilidades, tal y como viene dada por

𝑝f
𝑛 =

∑︁
𝑚

𝑤𝑚
𝑛 · 𝑝𝑚

𝑛 , (6.13)

where

𝑤𝑚
𝑛 = 1/ℎ𝑚

𝑛∑︀
𝑚

1/ℎ𝑚
𝑛

. (6.14)

A continuación, se obtiene una etiqueta binaria fusionada según la ecuación

(6.12).

• Caso 3, OR lógico: La respuesta del sistema corresponde al cálculo del OR

lógico sobre las etiquetas binarias de cada sistema unimodal. Es decir,

𝑌 f
𝑛 = 𝑌 phy

𝑛 ∨ 𝑌 sp
𝑛 . (6.15)

Las tres estrategias de fusión se basan en la literatura (por ejemplo, [301]) y se pro-

ponen como un compromiso entre la baja complejidad computacional y la robustez

considerando la confianza del sistema en las predicciones. Al comparar teóricamente

las tres estrategias de fusión, la OR lógica facilita la obtención de una predicción de

clase de miedo sin comprobar la confianza del subsistema, lo que podría llevar a una

falsa detección. Sin embargo, la estrategia de menor entropía confía en el modelo
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de mayor confianza sin tener en cuenta las diferencias en las probabilidades. Por úl-

timo, la combinación ponderada de la entropía inversa establece un equilibrio entre

las probabilidades y las entropías para cada subsistema unimodal. Así, la confianza

de esta última estrategia puede ser mayor que la de las demás.

En resumen, con respecto al procedimiento de prueba, las salidas del subsistema

unimodal son matrices de etiquetas binarias. En concreto, para el "conjunto de

datos", la longitud de las matrices es igual a la división de la duración de cada estí-

mulo relacionado con la emoción por la respectiva ventana de respuesta unimodal,

es decir, 10 y 1 segundo para los subsistemas fisiológico y del habla, respectivamente.

Posteriormente, estas matrices recogidas se procesan calculando las probabilidades

suaves y sus correspondientes etiquetas duras aplicando los umbrales fisiológicos

(𝑡ℎ𝑝ℎ𝑦) y del habla (𝑡ℎ𝑠𝑝). Las estrategias de fusión de datos propuestas gener-

arán también sus correspondientes etiquetas duras, tal y como se ha comentado

anteriormente. Las métricas de evaluación seleccionadas, que son la precisión y la

puntuación F1, se alimentan de las etiquetas duras finales obtenidas. La precisión

puede representar de forma justa los índices de predicción, ya que el desequilibrio

de clases es bajo. La puntuación F1 se considera para hacer frente al ligero dese-

quilibrio observado. Aunque la puntuación F1 debería ser una buena métrica para

un problema de detección como el que se aborda, en el que el número de positivos

debería ser relativamente bajo en comparación con los negativos, el escenario exper-

imental que se considera aquí está casi equilibrado y, por lo tanto, esta métrica no

es tan significativa como se espera que sea cuando se prueba con datos capturados

en condiciones reales.

6.4.2 Resultados de la fusión de datos multimodales
El primer análisis que hay que hacer es el rendimiento de los subsistemas fisiológico

y del habla trabajando de forma independiente en un entorno continuo, es decir, te-

niendo en cuenta todas las muestras. Este experimento es esencial para determinar

los umbrales, 𝑡ℎ𝑝ℎ𝑦 y 𝑡ℎ𝑠𝑝, que convierten las etiquetas binarias obtenidas para cada

periodo en una única etiqueta dura. Este paso es relevante porque determina si la

arquitectura es más o menos propensa a las falsas alarmas, independientemente de

la versión binaria o la disposición del sistema multimodal que se considere. Así,

cada parámetro fue barrido en el rango [0, 3, 0, 6] con pasos de 0, 1 mientras se gen-
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eraban los correspondientes 42 subsistemas unimodales siguiendo el enfoque LASO

y considerando cada longitud de vídeo como los diferentes periodos aplicables. En

este sentido, las Figs. 6-25a y 6-25b muestran los valores 𝑡ℎ𝑝ℎ𝑦 y 𝑡ℎ𝑠𝑝 frente a las

métricas de precisión y puntuación F1-media para los 42 grupos de prueba en los

subsistemas fisiológico y del habla, respectivamente.

th
phy

%

Accuracy
F1-Score

(a)

th
sp

%

Accuracy
F1-Score

(b)
Figure 6-25: Barrido de parámetros para a) 𝑡ℎ𝑝ℎ𝑦 y b) 𝑡ℎ𝑠𝑝 en los subsistemas
fisiológico y unimodal del habla, respectivamente.

Analizando la Fig. 6-25a, se puede observar cómo la puntuación F1 disminuye

a medida que 𝑡ℎ𝑝ℎ𝑦 crece, mientras que la precisión se mantiene bastante estable.

Obsérvese que la puntuación F1 depende en gran medida del número de Verdaderos

Positivos (TP) predichos, pero no tiene en cuenta los Verdaderos Negativos (TN).

Por lo tanto, si el TP aumenta y la suma de las tasas de falsos positivos (FP) y falsos

negativos (FN) disminuye, la puntuación F1 aumenta. Esta compensación provoca

el comportamiento observado, en el que cuanto más baja sea 𝑡ℎ𝑝ℎ𝑦, mayor será la

puntuación F1. Según este análisis, 𝑡ℎ𝑝ℎ𝑦 se fijó en 0,40, obteniendo un 66,66% y

un 64,60% para la puntuación F1 y la precisión, respectivamente. Tenga en cuenta

que estos valores son más altos que los reportados en la Tabla 6.7 debido al efecto

de considerar un conjunto de salidas uni-modales para un período de tiempo deter-

minado. La razón para elegir este valor de umbral específico es el buen compromiso

observado entre ambas métricas y el hecho de que la falta de un TP podría ser

dramática para el caso de uso de la violencia de género. Además, el sistema multi-

modal combinado debe abstenerse de disparar falsas alarmas para evitar abrumar

a las instituciones encargadas de protegerlas, y por eso se elige el subsistema de

voz para ser más conservador en este sentido. Analizando la Fig. 6-25b para el
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subsistema de voz, se puede observar cómo la F1 y la precisión empiezan a divergir

a partir de 0, 50. Por lo tanto, 𝑡ℎ𝑠𝑝 se fijó en este valor, obteniendo 54,07% y 57,82%

para la puntuación F1 y la precisión, respectivamente. Obsérvese que la exactitud

podría incluso aumentarse eligiendo un 𝑡ℎ𝑠𝑝 más alto.

Una vez fijados 𝑡ℎ𝑝ℎ𝑦 y 𝑡ℎ𝑠𝑝, estudiamos la predicción del rendimiento medio en los

42 grupos de prueba para las diferentes configuraciones de la arquitectura, como se

muestra en las figuras 6-27 y 6-26. Estas configuraciones son el subsistema unimodal

fisiológico, el subsistema unimodal del habla, Bindi 1.0, Bindi 2.0acon fusión de

datos de entropía mínima, Bindi 2.0acon fusión de datos de ponderación de entropía

inversa, Bindi 2.0b con fusión de datos de menor entropía, Bindi 2.0b con fusión

de datos de ponderación de entropía inversa, y Bindi 2.0b con fusión de datos de

OR lógico. Nótese que Bindi 2.0a no se combinó con la fusión de datos OR lógica

porque es equivalente a Bindi 1.0.
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Figure 6-26: Análisis del rendimiento medio de las puntuaciones F1 prediciendo
sobre los 42 voluntarias de prueba para las diferentes configuraciones de arquitectura.

Analizando la Figura 6-27, el subsistema uni-modal fisiológico consigue la mayor

precisión proporcionando hasta un 64,63% y superando incluso a los esquemas de

fusión. Para la métrica F1, este subsistema también proporciona la segunda tasa

más alta con hasta un 66,67%. Este comportamiento puede estar relacionado con

el sesgo introducido hacia la detección de la clase positiva, en primer lugar, con

el enfoque de aprendizaje sensible al coste y en segundo lugar, con el barrido de
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Figure 6-27: Análisis del rendimiento de la puntuación media de exactitud que
predice sobre los 42 voluntarias de prueba para las diferentes configuraciones de
arquitectura.

parámetros de 𝑡ℎ𝑝ℎ𝑦. En la Figura 6-26, el subsistema unimodal del habla pro-

porciona unas métricas significativamente inferiores a las del subsistema fisiológico.

Este hecho podría estar relacionado con el limitado número de muestras para entre-

nar la red neuronal y la posible calidad limitada de las mismas debido a la acción

de revivir la emoción sentida en la generación del conjunto de datos. Esta situación

provoca que Bindi 1.0 proporcione la peor métrica en este análisis debido a que

la respuesta final del sistema recae en el subsistema de habla. Bindi 2.0a y Bindi

2.0b ambos proporcionan una precisión similar cerca del subsistema fisiológico en

la mayoría de los casos. Sin embargo, Bindi 2.0b logra la puntuación F1 más alta

en todos los casos, especialmente para Bindi 2.0b con la fusión de datos lógica OR.

Esta última estrategia proporciona la puntuación F1 más alta, un 67,59En [11] se

puede encontrar un breve avance de este análisis y una discusión de las matrices de

confusión obtenidas para cada configuración.

Para elaborar los resultados mostrados en las Figuras 6-27 y 6-26, la Tabla 6.9

presenta resultados detallados para las diferentes configuraciones, incluyendo la

desviación estándar media por voluntario probado. Los índices de desviación están-

dar bajos son buenos indicadores de una mejor capacidad de generalización, siempre

que los resultados sean comparables. Obsérvese, por ejemplo, que aunque Bindi 1.0
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presenta la desviación estándar más baja, lo que puede considerarse una buena gen-

eralización, sus puntuaciones son superadas por la mayoría de las configuraciones,

como ya se ha dicho. Además se puede observar que los valores de desviación es-

tándar obtenidos son relativamente altos, especialmente para la puntuación F1. La

causa se muestra en la Fig. 6-28, donde se proporciona la puntuación F1 y la pre-

cisión para cada una de las 42 pruebas y el subsistema uni-modal. Se observa que

algunos voluntarias tienen una puntuación F1 de cero para el subsistema del habla

en esta figura. Este hecho se produce porque la puntuación F1 depende del TP

detectado, y no hubo predicciones positivas para algunos usuarios.

Physiological
uni-modal

Speech
uni-modal

BINDI
1.0

Bindi 2.0a
Lowest

Entropy

Bindi 2.0a
Inverse

Entropy
Weighting

Bindi 2.0b
Lowest

Entropy

Bindi 2.0b
Inverse

Entropy
Weighting

Bindi 2.0b
Logical

OR

F1-score
Mean 66.67 54.48 50.23 56.68 56.33 60.87 60.58 67.59

Std 17.31 26.73 27.64 23.91 24.05 26.63 26.98 14.27

Accuracy
Mean 64.63 58.5 62.93 63.61 63.61 63.27 63.27 60.2

Std 16.56 16.73 14.30 14.35 14.35 17.94 18.21 15.75

Table 6.9: Análisis del rendimiento medio que predice los 42 voluntarias de las
pruebas. Media y desviaciones estándar (Std).
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Figure 6-28: Análisis del rendimiento individual de los dos subsistemas unimodales.
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6.5 Discusión y conclusión
En este capítulo se han presentado diferentes contribuciones esenciales de esta

investigación. En primer lugar, se detalla y explica el conjunto de datos WEMAC-

nombre. En segundo lugar, se construye un sistema de detección del miedo basado

en la fisiología a partir de los datos recogidos en dicho conjunto de datos. Por úl-

timo, se proporciona un marco multimodal contextualizado en la tecnología Bindi.

En concreto, estas contribuciones pueden detallarse como sigue:

• La generación de un nuevo conjunto de datos de detección de emociones que

se ocupa de todas las limitaciones encontradas en las bases de datos públicas

disponibles. Este conjunto de datos pertenece al Base de datos UC3M4Safety.

• El diseño e integración de un proceso de recuperación fisiológica activa dentro

de los experimentos del conjunto de datos.

• El diseño, la implementación y la evaluación de un sistema de detección de

miedo basado en la fisiología utilizando el conjunto de datos "Nombre del

conjunto de datos".

• Un novedoso diseño de marco de fusión de datos multimodales utilizando in-

formación fisiológica y del habla.

• La aplicación de un modelo LASO que considera por primera vez el reconocimiento

del miedo, la fusión de señales multisensoriales y los estímulos de realidad vir-

tual.

Para el sistema de detección de miedo basado en la fisiología, el mejor resultado

se obtiene utilizando un clasificador KNN y un clasificador AdaBoost (ENS) para el

etiquetado discreto y dimensional del miedo, respectivamente. El primero alcanza

hasta un 66,87% y un 66,45%, mientras que el segundo consigue hasta un 64,23%

y un 66,62% para el ACC y el AUC promediados. Los resultados obtenidos están

en consonancia con todos los sistemas Leave-One-Out (sujetos o ensayos) presen-

tados en la literatura, véase la Tabla 4.19. Sin embargo, las recomendaciones pro-

porcionadas al final de la sección 6.3.2.3 podrían aprovecharse e investigarse para

mejorar estos resultados de referencia.

En lo que respecta específicamente al marco multimodal propuesto, el mejor resul-

tado de fusión equilibrada se obtiene para la disposición Bindi 2.0b aplicando una

estrategia de fusión de datos OR lógica. Este método reporta hasta un 60,20% y
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un 67,59% para ACC y F1-score, respectivamente. Estos valores representan un

resultado competitivo en comparación con el estado del arte que trata casos de uso

multimodal similares [297, 300, 302]. Por otra parte, cabe destacar que las config-

uraciones descritas en este capítulo para la detección del miedo a través de datos

fisiológicos y del habla son sólo una posible forma de caracterizar las situaciones y

contextos en los que los usuarios pueden verse involucrados. Se trata de líneas de

base iniciales para desarrollos posteriores que han permitido identificar importantes

retos. En primer lugar, es crucial encontrar un equilibrio adecuado entre TP-TN

y FP-FN, ya que el coste de no detectar una verdadera necesidad de ayuda es ter-

rible, pero también hay que evitar interferir en la vida cotidiana de las víctimas

de la violencia de género y la saturación de los servicios de protección con falsas

alarmas. Por lo tanto, hemos tratado de reducir los FN en la medida de lo posible

mientras los FP se mantienen en una tasa adecuada. Para ello, hemos consider-

ado estrategias basadas en los costes de clasificación errónea y en la fijación de los

parámetros de umbral. En concreto, hemos fijado el parámetro 𝑡ℎ𝑝ℎ𝑦 en el subsis-

tema fisiológico para obtener un mayor resultado de predicciones positivas con este

sistema, de forma que en una fase posterior, las estrategias de habla (en Bindi 1.0) y

de fusión de datos (en Bindi 2.0a y Bindi 2.0b) ayuden a corregir el sesgo mientras se

intenta mantener la predicción TP. Se maximiza el Durante esta experimentación,

el sistema unimodal del habla actual proporcionó tasas de rendimiento inferiores a

las esperadas, lo que podría estar causado por la desalineación temporal de los datos

fisiológicos y del habla en WEMAC. El desvanecimiento de la emoción elicitada en el

momento en que se recoge la muestra de voz podría estar detrás de esta disminución

del rendimiento.

En general, llegamos a la conclusión de que los sistemas de clasificación de miedo

unimodal y multimodal obtenidos empleando el conjunto de datos WEMAC presen-

tan resultados competitivos en comparación con el estado del arte. Sin embargo, es

necesario seguir investigando para mejorar estos sistemas de cara a su aplicabilidad

en la vida real. Así pues, el objetivo principal del marco multimodal propuesto y del

conjunto de datos WEMAC es despertar el interés de la comunidad por este prob-

lema tan desafiante de la violencia de género y empezar a abordar la perspectiva de

género en la inteligencia artificial.

Jose A. Miranda, Tesis Doctoral 294



6.5. Discusión y conclusión

Como trabajo futuro, el equipo de UC3M4Safety tiene previsto impulsar y desar-

rollar una serie de puntos clave y futuras líneas de actuación que se han identificado

como limitaciones junto a la realización de este trabajo:

• Estudiar otras alternativas de fusión y modos de combinación para los subsis-

temas uni-modales.

• Aumentar el número de voluntarias y los datos disponibles de los sensores

adquiridos con los dispositivos de borde.

• item Incluir en la base de datos los datos de las víctimas de la violencia de

género para comprender mejor sus mecanismos de activación en situaciones

relacionadas con el miedo.

• Incorporar la arquitectura completa del sistema fisiológico unimodal y el proce-

samiento de datos en la pulsera Bindi y probar su eficacia en entornos y situa-

ciones reales en experimentos en la naturaleza.

• Evaluar el uso de métricas de puntuación alternativas, como la información

mutua y el área bajo la curva, para seguir encontrando un equilibrio adecuado

entre las falsas alarmas y la probabilidad de fallo.

• Desarrollar y probar técnicas de adaptación del sujeto a los modelos unimodal

y de fusión.

En el diseño de sistemas de detección de miedo para prevenir y combatir situaciones

de violencia de género, pueden surgir varios problemas cuando el objetivo de un

sistema es trabajar con datos de la vida real. En primer lugar, la dificultad de

encontrar datos realistas, y en segundo lugar, la poca confianza en las arquitecturas

desarrolladas si los datos utilizados son actuados o sintéticos. Esta situación lleva

a la necesidad de generar bases de datos con emociones reales elicitadas, lo que

supone un gran reto y requiere mucho tiempo. Sobre todo, trabajar con elicitación

de emociones negativas fuertes, como las evocadas en WEMACpara la detección de

miedo en mujeres en un entorno de laboratorio, puede llevar a problemas éticos. Por

ello, hay que dedicar muchos recursos a salvaguardar el bienestar de los voluntarias

que participan. Este problema en particular se agrava cuando el grupo objetivo

de los voluntarias son mujeres que han sufrido violencia de género. Esto se debe

a que los fallos del sistema o servicio de protección tienen consecuencias críticas

para ellas. Por esta razón, la segunda versión del conjunto de datos que se está
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recopilando actualmente en el laboratorio incluye únicamente a voluntarias víctimas

de la violencia de género.
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Capı́tulo 7
Conclusión

En este capítulo final, resumiremos las aportaciones de esta investigación doctoral

en función de los objetivos propuestos. También aportaremos algunas sugerencias

sobre posibles temas a estudiar en el futuro. Estas ideas provienen del último año

de investigación y pueden suponer el punto de partida de nuevos proyectos de in-

vestigación.

Este doctorado comenzó con la creación de la UC3M4Safety, un equipo multidisci-

plinar que se creó al enfrentarse al problema de la Violencia de Género y reclamar

que era necesario un enfoque multidisciplinar para fomentar nuevas y más innovado-

ras soluciones para prevenirla y combatirla. Impulsados por esta motivación, nos

propusimos aportar nuevas herramientas para prevenir y combatir las situaciones

de riesgo de Violencia de Género e, incluso, las agresiones, desde una perspectiva

tecnológica, pero sin dejar de lado las diferentes consideraciones sociológicas rela-

cionadas con el problema. En este contexto, y teniendo en cuenta el potencial

tecnológico de la computación afectiva a través de la información fisiológica para

generar esas nuevas herramientas, realizamos un análisis detallado sobre el desen-

trañamiento de la relación entre las señales fisiológicas y las emociones relacionadas

con el miedo. Este estudio nos proporcionó el conocimiento para proponer un nuevo

enfoque para detectar las emociones relacionadas con el miedo haciendo uso de las

diferentes teorías emocionales y de los indicadores fisiológicos afectivos. Este estu-

dio también se acompañó de una investigación exhaustiva sobre las herramientas

de provocación de emociones, los informes de evaluación de emociones, las bases

de datos de clasificación de emociones, el diseño de sistemas de computación afec-
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tiva y las metodologías y herramientas relacionadas que nos permitieron construir

una sólida base de conocimientos tecnológicos para cumplir con los retos de este

doctorado.

Posteriormente, el enfoque de clasificación binaria del miedo se ha incluido en

diferentes sistemas de computación afectiva construidos sobre conjuntos de datos

disponibles públicamente. En concreto, se han diseñado diferentes sistemas espe-

cializados de detección de miedo utilizando características de dominio temporal,

frecuencial y no lineal. El valor añadido de las arquitecturas propuestas es la con-

sideración de las restricciones de procesamiento digital para integrar adecuadamente

dicho sistema en una plataforma de dispositivos de borde vestibles para permitir la

protección de personas vulnerables. Durante el diseño de estos sistemas, se de-

tectaron diferentes limitaciones en las bases de datos de libre acceso con las que

estábamos trabajando. Por ejemplo, no se utilizaba tecnología de inmersión emo-

cional, la metodología de etiquetado no tenía en cuenta la perspectiva de género,

no se garantizaba una distribución de estímulos adecuadamente equilibrada con re-

specto a las emociones objetivo, y no se implementaba la integración de un proceso

de recuperación basado en las señales fisiológicas de los voluntarios para cuantificar

y aislar la activación emocional entre los estímulos. Sin embargo, los sistemas prop-

uestos se compararon con éxito con el estado de la técnica.

Junto con el diseño y la validación de los diferentes sistemas de clasificación del

miedo, se propuso una nueva solución de hardware vestible para desplegar las ar-

quitecturas de los sistemas de detección relacionados con el miedo. Así, diseñamos

Bindi, un sistema multimodal autónomo para la detección de situaciones de riesgo

en contextos de violencia de género. La parte de computación de borde del sistema

es una red ciberfísica inteligente. En concreto, esto se consigue mediante sensores

inteligentes fisiológicos y físicos (audio y/o voz) que monitorizan continuamente al

usuario. La capa del sistema basada en la niebla reside en una fusión de datos

multimodal dentro de una aplicación ad-hoc para smartphones. Además, la infor-

mación se envía a servidores informáticos específicos en la nube, que se encargan de

almacenar los datos recogidos para posteriores acciones legales. El diseño de este

sistema puede impulsar la generación de nuevos mecanismos de prevención y lucha

contra la la violencia de género.
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Finalmente, tras haber identificado la necesidad de generar una nueva base de

datos y crear una nueva herramienta tecnológica, diseñamos y realizamos el conjunto

de datos WEMAC. Consiste en de 104 mujeres que nunca han sufrido Violencia

de Género que realizaron diferentes visualizaciones de estímulos relacionados con

la emoción en un entorno de laboratorio. Los anteriores sistemas de clasificación

binaria del miedo se mejoraron y se aplicaron a este novedoso conjunto de datos

multimodal, lo que permitió obtener resultados competitivos en comparación con el

estado del arte.

7.1 Contribuciones
Para ser más precisos, ordenaremos las contribuciones en función del capítulo en

el que se realizan.

Las aportaciones sobre el capítulo 4 son las siguientes:

• La aplicación y validación de una nueva propuesta de clasificación binaria

del miedo utilizando conjuntos de datos abiertos disponibles y un conjunto

reducido de señales fisiológicas.

• El diseño y la evaluación de un sistema de clasificación del miedo que emplea

la base de datos DEAP y el modelo PA. Logró un AUC de 81,60% y un Gmean

de 81,55% en promedio para un enfoque independiente del sujeto y sólo dos

señales fisiológicas (PPG y GSR).

• El diseño y la evaluación de un sistema de clasificación del miedo que emplea

la base de datos MAHNOB y el modelo PAD. Logró un AUC de 86,00% y

un Gmean de 73,78% en promedio para un enfoque independiente del sujeto

y sólo tres señales fisiológicas (PPG, GSR y SKT). Hay que tener en cuenta

que este sistema se probó con LOSO.

Las aportaciones sobre el capítulo 5 son las siguientes:

• El diseño, hardware y software, de un nuevo sistema smart-wearable basado

en un conjunto reducido de señales fisiológicas y orientado a la generación de

nuevos mecanismos y herramientas tecnológicas para prevenir y combatir la

Violencia de Género.

• Diseño e implementación de un modelo de inferencia Mamdani de base de re-

glas difusas de baja complejidad para la evaluación de la calidad de las señales
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en la pulsera de Bindi. Esto va acompañado de una propuesta de definición

e implementación de un novedoso ajuste fino no supervisado en línea basado

a través de la similitud escalada entre conjuntos difusos de tipo II de in-

tervalo para las actualizaciones autoadaptativas del modelo. Los resultados

muestran que el sistema alcanzó una precisión global del 93,72%. El sistema

propuesto, que tiene en cuenta la calidad, presenta un consumo de energía de

hasta 59,40 𝑚𝐽 , lo que repercute directamente en el consumo global de en-

ergía del 1,5% al 20,7% para la transmisión de una señal de fotopletismografía

ruidosa de 12-60 segundos.

• Se implementaron diferentes estrategias de filtrado y técnicas de extracción de

características en el brazalete de Bindi. Esto va acompañado de una medición

exitosa y una comparación de resultados con un conjunto de herramientas

específicas para la investigación.

Las aportaciones sobre el capítulo 6 son las siguientes:

• Para la generación de este conjunto de datos ha sido necesario un arduo tra-

bajo en equipo. Por ejemplo, se ha empleado una cantidad global de 7000

horas. Se trata de una colección de experimentos capturados en laboratorio

condiciones de laboratorio con mujeres voluntarias. Un conjunto de estímulos

audiovisuales se emplean para provocar emociones realistas utilizando la real-

idad virtual y adquiriendo la información fisiológica y del habla de las volun-

tarias. Además, también se recogen anotaciones emocionales autoinformadas

en escalas emocionales dimensionales y discretas. Los objetivos y contribu-

ciones de este novedoso conjunto de datos multimodales son múltiples, como

se muestra brevemente a continuación:

1. La integración de la tecnología inmersiva para provocar emociones. Se

emplea la realidad virtual por ser la que más se asemeja a los escenarios

del mundo real, ofreciendo un alto grado de correlación entre las condi-

ciones de la investigación y el fenómeno emocional estudiado, es decir,

con validez ecológica.

2. La consideración de un elevado número de voluntarios. El primer experi-

mento contó con un total de 104 mujeres voluntarias que no eran víctimas

de la violencia de género.
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3. La aplicación de una distribución de estímulos debidamente equilibrada

respecto a las emociones objetivo. Antes de generar el conjunto de datos,

se aplicó una metodología mixta con jueces expertos y público en gen-

eral para seleccionar los mejores estímulos audiovisuales para provocar

reacciones emocionales. Se realizó una encuesta pública con 1.332 par-

ticipantes para etiquetar los estímulos relacionados con las emociones

preseleccionadas.

4. La modificación de la metodología de etiquetado para tener en cuenta la

perspectiva de género. Este problema se abordó cambiando los maniquíes

de autoevaluación originales.

5. La implementación de un proceso de recuperación activa respecto a la

estabilización fisiológica entre estímulos. Hasta donde sabemos, no existe

ningún conjunto de datos público que haya implementado una evaluación

de la estabilización en línea mediante la evaluación de la retroalimentación

fisiológica durante los experimentos.

Entre estas contribuciones, he participado directamente en los objetivos 1, 2,

4,𝑦5.

• Los primeros resultados experimentales multimodales con WEMAC. Éstos

muestran una precisión media de la tasa de reconocimiento del miedo de hasta

63,61% con el método Leave-hAlf-Subject-Out (LASO). Que yo sepa, es la

primera vez que se presenta un modelo LASO que considera el reconocimiento

del miedo, la fusión de señales multisensoriales y los estímulos de realidad

virtual.

7.2 Trabajo futuro
El autor desea aportar algunas sugerencias para futuras investigaciones:

• La consideración de más señales fisiológicas, o incluso biológicas, para ampliar

el alcance de esta investigación y mejorar los resultados de la clasificación del

miedo.

• Análisis multivariante considerando los cuestionarios iniciales recogidos al prin-

cipio de los experimentos WEMAC junto con la información fisiológica y au-

ditiva.
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• En caso de recoger autoinformes discretos y dimensionales de los voluntarios,

ambas metodologías de etiquetado podrían fusionarse mediante una combi-

nación lineal o no lineal. Esto está en consonancia con el hecho de que tanto

las etiquetas discretas como las dimensionales existen, pero tienen propósitos

diferentes o caracterizan aspectos distintos de las emociones.

• La investigación y la aplicación de técnicas de detección comprimida para

reducir el consumo de energía de la pulsera. Ya se han iniciado los trabajos

sobre este tema.

• La investigación e implementación de técnicas de recolección de energía dentro

de la pulsera sería interesante para observar el efecto del consumo de energía.

El trabajo sobre este tema ya se ha iniciado.

• La investigación y la integración de sistemas de clasificación semi-supervisados

destinados a tratar la dinámica de la emoción y/o el aprendizaje débilmente

supervisado para el reconocimiento de la emoción de grano fino utilizando

señales fisiológicas. Los trabajos sobre este tema ya se han iniciado.

• La integración de la computación neuromórfica en Bindi, como el Akida Neural

Processor SoC.

• La implementación de nuevos algoritmos de eliminación de artefactos de movimiento.

Por ejemplo, las técnicas de sincronización junto con las redes neuronales de

extremo a extremo, que son compatibles con la computación de borde, tienen

potencial. Ya se ha empezado a trabajar en este tema.

• La investigación de nuevas técnicas y métodos de personalización del apren-

dizaje automático aumentaría las posibilidades de despliegue de Bindi. El

trabajo sobre este tema ya se ha iniciado.

• El diseño de nuevos factores de forma para llevar puesto, en lugar de una

pulsera y un colgante.

• El diseño de un sistema experto que se ejecute en la nube y funcione de forma

multivariable. El objetivo de dicho sistema sería corregir o modificar el apren-

dizaje automático de la computación de borde.
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